Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92213
Title: Demand Functions in Dynamic Games
Authors: Krasovskii, N. A.
Tarasyev, A. M.
Issue Date: 2018
Publisher: Elsevier B.V.
Citation: Krasovskii N. A. Demand Functions in Dynamic Games / N. A. Krasovskii, A. M. Tarasyev. — DOI 10.1016/j.ifacol.2018.11.394 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 271-276.
Abstract: The paper is devoted to construction of solutions in dynamic bimatrix games. In the model, the payoffs are presented by discounted integrals on the infinite time horizon. The dynamics of the game is subject to the system of the A.N. Kolmogorov type differential equations. The problem of construction of equilibrium trajectories is analyzed in the framework of the minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The concept of dynamic Nash equilibrium developed by A.F. Kleimenov is applied to design the structure of the game solution. For obtaining constructive control strategies of players, the maximum principle of L.S. Pontryagin is used in conjunction with the generalized method of characteristics for Hamilton-Jacobi equations. The impact of the discount index is indicated for equilibrium strategies of the game and demand functions in the dynamic bimatrix game are constructed. © 2018
Keywords: DEMAND FUNCTIONS
DIFFERENTIAL GAMES
EQUILIBRIUM TRAJECTORIES
GUARANTEED STRATEGIES
OPTIMAL CONTROL
DIFFERENTIAL EQUATIONS
FUNCTIONS
CONSTRUCTIVE CONTROL
DEMAND FUNCTION
DIFFERENTIAL GAMES
EQUILIBRIUM STRATEGY
GUARANTEED STRATEGIES
HAMILTON - JACOBI EQUATIONS
INFINITE TIME HORIZON
OPTIMAL CONTROLS
GAME THEORY
URI: http://elar.urfu.ru/handle/10995/92213
Access: info:eu-repo/semantics/openAccess
RSCI ID: 38639156
SCOPUS ID: 85058236649
WOS ID: 000453278300053
PURE ID: 8414471
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.11.394
metadata.dc.description.sponsorship: The paper is supported by Russin Foundation for Basic Reseaarch (Project No. 18-01-0264a).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.394.pdf453,27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.