Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/92213
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrasovskii, N. A.en
dc.contributor.authorTarasyev, A. M.en
dc.date.accessioned2020-10-20T16:34:50Z-
dc.date.available2020-10-20T16:34:50Z-
dc.date.issued2018-
dc.identifier.citationKrasovskii N. A. Demand Functions in Dynamic Games / N. A. Krasovskii, A. M. Tarasyev. — DOI 10.1016/j.ifacol.2018.11.394 // IFAC-PapersOnLine. — 2018. — Vol. 32. — Iss. 51. — P. 271-276.en
dc.identifier.issn2405-8963-
dc.identifier.otherhttps://doi.org/10.1016/j.ifacol.2018.11.394pdf
dc.identifier.other1good_DOI
dc.identifier.other6c2e4845-0dac-433f-878f-1971f868d903pure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85058236649m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/92213-
dc.description.abstractThe paper is devoted to construction of solutions in dynamic bimatrix games. In the model, the payoffs are presented by discounted integrals on the infinite time horizon. The dynamics of the game is subject to the system of the A.N. Kolmogorov type differential equations. The problem of construction of equilibrium trajectories is analyzed in the framework of the minimax approach proposed by N.N. Krasovskii and A.I. Subbotin in the differential games theory. The concept of dynamic Nash equilibrium developed by A.F. Kleimenov is applied to design the structure of the game solution. For obtaining constructive control strategies of players, the maximum principle of L.S. Pontryagin is used in conjunction with the generalized method of characteristics for Hamilton-Jacobi equations. The impact of the discount index is indicated for equilibrium strategies of the game and demand functions in the dynamic bimatrix game are constructed. © 2018en
dc.description.sponsorshipThe paper is supported by Russin Foundation for Basic Reseaarch (Project No. 18-01-0264a).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIFAC-PapersOnLineen
dc.subjectDEMAND FUNCTIONSen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectEQUILIBRIUM TRAJECTORIESen
dc.subjectGUARANTEED STRATEGIESen
dc.subjectOPTIMAL CONTROLen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.subjectFUNCTIONSen
dc.subjectCONSTRUCTIVE CONTROLen
dc.subjectDEMAND FUNCTIONen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectEQUILIBRIUM STRATEGYen
dc.subjectGUARANTEED STRATEGIESen
dc.subjectHAMILTON - JACOBI EQUATIONSen
dc.subjectINFINITE TIME HORIZONen
dc.subjectOPTIMAL CONTROLSen
dc.subjectGAME THEORYen
dc.titleDemand Functions in Dynamic Gamesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38639156-
dc.identifier.doi10.1016/j.ifacol.2018.11.394-
dc.identifier.scopus85058236649-
local.affiliationKrasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.affiliationUral Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeKrasovskii, N.A., Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.contributor.employeeTarasyev, A.M., Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation, Ural Federal University, Yekaterinburg, Russian Federation
local.description.firstpage271-
local.description.lastpage276-
local.issue51-
local.volume32-
dc.identifier.wos000453278300053-
local.identifier.pure8414471-
local.identifier.eid2-s2.0-85058236649-
local.fund.rffi18-01-0264-
local.identifier.wosWOS:000453278300053-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016-j.ifacol.2018.11.394.pdf453,27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.