Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/141465
Title: | On adjacency operators of locally finite graphs |
Authors: | Trofimov, V. I. |
Issue Date: | 2024 |
Publisher: | Steklov Mathematical Institute of Russian Academy of Sciences |
Citation: | Trofimov, V. I. (2024). On adjacency operators of locally finite graphs. Izvestiya Mathematics, 88(3), 542-589. https://doi.org/10.4213/im9408e |
Abstract: | A graph Γ is called locally finite if, for each vertex v ∈ Γ, the set Γ(v) of its adjacent vertices is finite. For an arbitrary locally finite graph Γ with vertex set V (Γ) and an arbitrary field F, let FV(Γ) be the vector space over F of all functions V (Γ) → F (with natural componentwise operations) and let A(alg) Γ,Fbe the linear operator F V(Γ) → FV(Γ) defined by (Formula presented). In the case of a finite graph Γ, the mapping A(alg) Γ,F is the well-known operator defined by the adjacency matrix of the graph Γ (over F), and the theory of eigenvalues and eigenfunctions of such operators is a well developed part of the theory of finite graphs (at least, in the case F = C). In the present paper, we develop the theory of eigenvalues and eigenfunctions of the operators A(alg) Γ,F for infinite locally finite graphs Γ (however, some results that follow may present certain interest for the theory of finite graphs) and arbitrary fields F, even though in the present paper special emphasis is placed on the case of a connected graph Γ with uniformly bounded degrees of vertices and F = C. The previous attempts in this direction were not, in the author’s opinion, quite satisfactory in the sense that they have been concerned only with eigenfunctions (and corresponding eigenvalues) of rather special type. © 2024 Russian Academy of Sciences, Steklov Mathematical Institute of RAS. |
Keywords: | ADJACENCY MATRIX EIGENFUNCTION EIGENVALUE LOCALLY FINITE GRAPH |
URI: | http://elar.urfu.ru/handle/10995/141465 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 68266670 |
SCOPUS ID: | 85197584395 |
PURE ID: | 59694980 |
ISSN: | 1064-5632 1468-4810 |
DOI: | 10.4213/im9408e |
Sponsorship: | Ministry of Education and Science of the Russian Federation, Minobrnauka; Ural Mathematical Center, (075-02-2022-877) Supported by the Ural Mathematical Center under agreement no. 075-02-2022-877 with the Ministry of Science and Higher Education of the Russian Federation. AMS 2020 Mathematics Subject Classification. 05C63, 05C50. |
RSCF project card: | Turun Yliopisto, UTU In 2018, the DLT conference series instituted the Salomaa Prize to honour the work of Arto Salomaa, and to increase the visibility of research on automata and formal language theory. The prize is funded by the University of Turku. The ceremony for the Salomaa |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85197584395.pdf | 638,89 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.