Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141465
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Trofimov, V. I. | en |
dc.date.accessioned | 2025-02-25T10:46:55Z | - |
dc.date.available | 2025-02-25T10:46:55Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Trofimov, V. I. (2024). On adjacency operators of locally finite graphs. Izvestiya Mathematics, 88(3), 542-589. https://doi.org/10.4213/im9408e | apa_pure |
dc.identifier.issn | 1064-5632 | - |
dc.identifier.issn | 1468-4810 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Green Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197584395&doi=10.4213%2fim9408e&partnerID=40&md5=8ca6f88e7e58ddc0d31d05a4f9b7f438 | 1 |
dc.identifier.other | http://arxiv.org/pdf/2208.01926 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141465 | - |
dc.description.abstract | A graph Γ is called locally finite if, for each vertex v ∈ Γ, the set Γ(v) of its adjacent vertices is finite. For an arbitrary locally finite graph Γ with vertex set V (Γ) and an arbitrary field F, let FV(Γ) be the vector space over F of all functions V (Γ) → F (with natural componentwise operations) and let A(alg) Γ,Fbe the linear operator F V(Γ) → FV(Γ) defined by (Formula presented). In the case of a finite graph Γ, the mapping A(alg) Γ,F is the well-known operator defined by the adjacency matrix of the graph Γ (over F), and the theory of eigenvalues and eigenfunctions of such operators is a well developed part of the theory of finite graphs (at least, in the case F = C). In the present paper, we develop the theory of eigenvalues and eigenfunctions of the operators A(alg) Γ,F for infinite locally finite graphs Γ (however, some results that follow may present certain interest for the theory of finite graphs) and arbitrary fields F, even though in the present paper special emphasis is placed on the case of a connected graph Γ with uniformly bounded degrees of vertices and F = C. The previous attempts in this direction were not, in the author’s opinion, quite satisfactory in the sense that they have been concerned only with eigenfunctions (and corresponding eigenvalues) of rather special type. © 2024 Russian Academy of Sciences, Steklov Mathematical Institute of RAS. | en |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation, Minobrnauka; Ural Mathematical Center, (075-02-2022-877) | en |
dc.description.sponsorship | Supported by the Ural Mathematical Center under agreement no. 075-02-2022-877 with the Ministry of Science and Higher Education of the Russian Federation. AMS 2020 Mathematics Subject Classification. 05C63, 05C50. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Steklov Mathematical Institute of Russian Academy of Sciences | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Izvestiya: Mathematics | 2 |
dc.source | Izvestiya Mathematics | en |
dc.subject | ADJACENCY MATRIX | en |
dc.subject | EIGENFUNCTION | en |
dc.subject | EIGENVALUE | en |
dc.subject | LOCALLY FINITE GRAPH | en |
dc.title | On adjacency operators of locally finite graphs | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.rsi | 68266670 | - |
dc.identifier.doi | 10.4213/im9408e | - |
dc.identifier.scopus | 85197584395 | - |
local.contributor.employee | Trofimov V.I., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation, Ural Federal University, Ekaterinburg, Russian Federation, Ural Mathematical Center, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 542 | |
local.description.lastpage | 589 | |
local.issue | 3 | - |
local.volume | 88 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation | en |
local.contributor.department | Ural Federal University, Ekaterinburg, Russian Federation | en |
local.contributor.department | Ural Mathematical Center, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 59694980 | - |
local.identifier.eid | 2-s2.0-85197584395 | - |
local.fund.rsf | Turun Yliopisto, UTU | |
local.fund.rsf | In 2018, the DLT conference series instituted the Salomaa Prize to honour the work of Arto Salomaa, and to increase the visibility of research on automata and formal language theory. The prize is funded by the University of Turku. The ceremony for the Salomaa | |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85197584395.pdf | 638,89 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.