Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131092
Название: | A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel |
Авторы: | Chen, H. Qiu, W. Zaky, M. A. Hendy, A. S. |
Дата публикации: | 2023 |
Издатель: | Springer International Publishing |
Библиографическое описание: | Chen, H, Qiu, W, Zaky, MA & Hendy, AS 2023, 'A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel', Calcolo, Том. 60, № 1, 13. https://doi.org/10.1007/s10092-023-00508-6 Chen, H., Qiu, W., Zaky, M. A., & Hendy, A. S. (2023). A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. Calcolo, 60(1), [13]. https://doi.org/10.1007/s10092-023-00508-6 |
Аннотация: | A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with a weakly singular kernel is of concern in this paper. The scheme is targeted to reduce the computation time and to improve the accuracy of the scheme developed by Xu et al. (Appl Numer Math 152:169–184, 2020). The constructed scheme is armed by three steps: First, a small nonlinear system is solved on the coarse grid using a fix-point iteration. Second, Lagrange’s linear interpolation formula is used to arrive at some auxiliary values for the analysis of the fine grid. Finally, a linearized Crank–Nicolson finite difference system is solved on the fine grid. Moreover, the algorithm uses a central difference approximation for the spatial derivatives. In the time direction, the time derivative and integral term are approximated by the Crank–Nicolson technique and product integral rule, respectively. By means of the discrete energy method, stability and space-time second-order convergence of the proposed approach are obtained in L2-norm. Finally, the numerical verification is fulfilled as the numerical results of the given numerical experiments agree with the theoretical analysis and verify the effectiveness of the algorithm. © 2023, The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT). |
Ключевые слова: | ACCURATE SECOND ORDER NONLINEAR FRACTIONAL EVOLUTION EQUATION NUMERICAL EXPERIMENTS STABILITY AND CONVERGENCE TIME TWO-GRID ALGORITHM APPROXIMATION ALGORITHMS INTEGRODIFFERENTIAL EQUATIONS ITERATIVE METHODS ACCURATE SECOND ORDER FRACTIONAL EVOLUTION EQUATIONS NONLINEAR FRACTIONAL EVOLUTION EQUATION NUMERICAL EXPERIMENTS SECOND ORDERS SECOND-ORDER SCHEME STABILITY AND CONVERGENCE TIME TWO-GRID ALGORITHM TWO-DIMENSIONAL TWO-GRID ALGORITHM NONLINEAR EQUATIONS |
URI: | http://elar.urfu.ru/handle/10995/131092 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85146944347 |
Идентификатор WOS: | 000923278400001 |
Идентификатор PURE: | 33633587 |
ISSN: | 0008-0624 |
DOI: | 10.1007/s10092-023-00508-6 |
Сведения о поддержке: | CX20220454; Russian Science Foundation, RSF: 22-21-00075 The authors are grateful for helpful comments and suggestions from the reviewers. This work was supported by Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20220454). Ahmed S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075. |
Карточка проекта РНФ: | 22-21-00075 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85146944347.pdf | 304,12 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.