Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131092
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorChen, H.en
dc.contributor.authorQiu, W.en
dc.contributor.authorZaky, M. A.en
dc.contributor.authorHendy, A. S.en
dc.date.accessioned2024-04-05T16:38:45Z-
dc.date.available2024-04-05T16:38:45Z-
dc.date.issued2023-
dc.identifier.citationChen, H, Qiu, W, Zaky, MA & Hendy, AS 2023, 'A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel', Calcolo, Том. 60, № 1, 13. https://doi.org/10.1007/s10092-023-00508-6harvard_pure
dc.identifier.citationChen, H., Qiu, W., Zaky, M. A., & Hendy, A. S. (2023). A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. Calcolo, 60(1), [13]. https://doi.org/10.1007/s10092-023-00508-6apa_pure
dc.identifier.issn0008-0624-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85146944347&doi=10.1007%2fs10092-023-00508-6&partnerID=40&md5=3eaecbe41a7c8e98674f75ce84e566ff1
dc.identifier.otherhttps://arxiv.org/pdf/2209.00211pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131092-
dc.description.abstractA two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with a weakly singular kernel is of concern in this paper. The scheme is targeted to reduce the computation time and to improve the accuracy of the scheme developed by Xu et al. (Appl Numer Math 152:169–184, 2020). The constructed scheme is armed by three steps: First, a small nonlinear system is solved on the coarse grid using a fix-point iteration. Second, Lagrange’s linear interpolation formula is used to arrive at some auxiliary values for the analysis of the fine grid. Finally, a linearized Crank–Nicolson finite difference system is solved on the fine grid. Moreover, the algorithm uses a central difference approximation for the spatial derivatives. In the time direction, the time derivative and integral term are approximated by the Crank–Nicolson technique and product integral rule, respectively. By means of the discrete energy method, stability and space-time second-order convergence of the proposed approach are obtained in L2-norm. Finally, the numerical verification is fulfilled as the numerical results of the given numerical experiments agree with the theoretical analysis and verify the effectiveness of the algorithm. © 2023, The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT).en
dc.description.sponsorshipCX20220454; Russian Science Foundation, RSF: 22-21-00075en
dc.description.sponsorshipThe authors are grateful for helpful comments and suggestions from the reviewers. This work was supported by Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20220454). Ahmed S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer International Publishingen
dc.relationinfo:eu-repo/grantAgreement/RSF//22-21-00075en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceCalcolo2
dc.sourceCalcoloen
dc.subjectACCURATE SECOND ORDERen
dc.subjectNONLINEAR FRACTIONAL EVOLUTION EQUATIONen
dc.subjectNUMERICAL EXPERIMENTSen
dc.subjectSTABILITY AND CONVERGENCEen
dc.subjectTIME TWO-GRID ALGORITHMen
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectINTEGRODIFFERENTIAL EQUATIONSen
dc.subjectITERATIVE METHODSen
dc.subjectACCURATE SECOND ORDERen
dc.subjectFRACTIONAL EVOLUTION EQUATIONSen
dc.subjectNONLINEAR FRACTIONAL EVOLUTION EQUATIONen
dc.subjectNUMERICAL EXPERIMENTSen
dc.subjectSECOND ORDERSen
dc.subjectSECOND-ORDER SCHEMEen
dc.subjectSTABILITY AND CONVERGENCEen
dc.subjectTIME TWO-GRID ALGORITHMen
dc.subjectTWO-DIMENSIONALen
dc.subjectTWO-GRID ALGORITHMen
dc.subjectNONLINEAR EQUATIONSen
dc.titleA two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernelen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1007/s10092-023-00508-6-
dc.identifier.scopus85146944347-
local.contributor.employeeChen, H., MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, Chinaen
local.contributor.employeeQiu, W., MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, Chinaen
local.contributor.employeeZaky, M.A., Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia, Department of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypten
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.issue1-
local.volume60-
dc.identifier.wos000923278400001-
local.contributor.departmentMOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, Chinaen
local.contributor.departmentDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabiaen
local.contributor.departmentDepartment of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypten
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.identifier.pure33633587-
local.description.order13-
local.identifier.eid2-s2.0-85146944347-
local.fund.rsf22-21-00075-
local.identifier.wosWOS:000923278400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85146944347.pdf304,12 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.