Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131092
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chen, H. | en |
dc.contributor.author | Qiu, W. | en |
dc.contributor.author | Zaky, M. A. | en |
dc.contributor.author | Hendy, A. S. | en |
dc.date.accessioned | 2024-04-05T16:38:45Z | - |
dc.date.available | 2024-04-05T16:38:45Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Chen, H, Qiu, W, Zaky, MA & Hendy, AS 2023, 'A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel', Calcolo, Том. 60, № 1, 13. https://doi.org/10.1007/s10092-023-00508-6 | harvard_pure |
dc.identifier.citation | Chen, H., Qiu, W., Zaky, M. A., & Hendy, A. S. (2023). A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. Calcolo, 60(1), [13]. https://doi.org/10.1007/s10092-023-00508-6 | apa_pure |
dc.identifier.issn | 0008-0624 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146944347&doi=10.1007%2fs10092-023-00508-6&partnerID=40&md5=3eaecbe41a7c8e98674f75ce84e566ff | 1 |
dc.identifier.other | https://arxiv.org/pdf/2209.00211 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131092 | - |
dc.description.abstract | A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with a weakly singular kernel is of concern in this paper. The scheme is targeted to reduce the computation time and to improve the accuracy of the scheme developed by Xu et al. (Appl Numer Math 152:169–184, 2020). The constructed scheme is armed by three steps: First, a small nonlinear system is solved on the coarse grid using a fix-point iteration. Second, Lagrange’s linear interpolation formula is used to arrive at some auxiliary values for the analysis of the fine grid. Finally, a linearized Crank–Nicolson finite difference system is solved on the fine grid. Moreover, the algorithm uses a central difference approximation for the spatial derivatives. In the time direction, the time derivative and integral term are approximated by the Crank–Nicolson technique and product integral rule, respectively. By means of the discrete energy method, stability and space-time second-order convergence of the proposed approach are obtained in L2-norm. Finally, the numerical verification is fulfilled as the numerical results of the given numerical experiments agree with the theoretical analysis and verify the effectiveness of the algorithm. © 2023, The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT). | en |
dc.description.sponsorship | CX20220454; Russian Science Foundation, RSF: 22-21-00075 | en |
dc.description.sponsorship | The authors are grateful for helpful comments and suggestions from the reviewers. This work was supported by Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20220454). Ahmed S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer International Publishing | en |
dc.relation | info:eu-repo/grantAgreement/RSF//22-21-00075 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Calcolo | 2 |
dc.source | Calcolo | en |
dc.subject | ACCURATE SECOND ORDER | en |
dc.subject | NONLINEAR FRACTIONAL EVOLUTION EQUATION | en |
dc.subject | NUMERICAL EXPERIMENTS | en |
dc.subject | STABILITY AND CONVERGENCE | en |
dc.subject | TIME TWO-GRID ALGORITHM | en |
dc.subject | APPROXIMATION ALGORITHMS | en |
dc.subject | INTEGRODIFFERENTIAL EQUATIONS | en |
dc.subject | ITERATIVE METHODS | en |
dc.subject | ACCURATE SECOND ORDER | en |
dc.subject | FRACTIONAL EVOLUTION EQUATIONS | en |
dc.subject | NONLINEAR FRACTIONAL EVOLUTION EQUATION | en |
dc.subject | NUMERICAL EXPERIMENTS | en |
dc.subject | SECOND ORDERS | en |
dc.subject | SECOND-ORDER SCHEME | en |
dc.subject | STABILITY AND CONVERGENCE | en |
dc.subject | TIME TWO-GRID ALGORITHM | en |
dc.subject | TWO-DIMENSIONAL | en |
dc.subject | TWO-GRID ALGORITHM | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.title | A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/submittedVersion | en |
dc.identifier.doi | 10.1007/s10092-023-00508-6 | - |
dc.identifier.scopus | 85146944347 | - |
local.contributor.employee | Chen, H., MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, China | en |
local.contributor.employee | Qiu, W., MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, China | en |
local.contributor.employee | Zaky, M.A., Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia, Department of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypt | en |
local.contributor.employee | Hendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.issue | 1 | - |
local.volume | 60 | - |
dc.identifier.wos | 000923278400001 | - |
local.contributor.department | MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Hunan, Changsha, 410081, China | en |
local.contributor.department | Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia | en |
local.contributor.department | Department of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypt | en |
local.contributor.department | Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.identifier.pure | 33633587 | - |
local.description.order | 13 | - |
local.identifier.eid | 2-s2.0-85146944347 | - |
local.fund.rsf | 22-21-00075 | - |
local.identifier.wos | WOS:000923278400001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85146944347.pdf | 304,12 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.