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Abstract In this paper, a two-grid temporal second-order scheme for the two-
dimensional nonlinear Volterra integro-differential equation with weakly singular
kernel is proposed to reduce the computation time and improve the accuracy of the
scheme developed by Xu et al. (Applied Numerical Mathematics 152 (2020) 169-
184). The proposed scheme consists of three steps: First, a small nonlinear system
is solved on the coarse grid using fix-point iteration. Second, the Lagrange’s linear
interpolation formula is used to arrive at some auxiliary values for analysis of the
fine grid. Finally, a linearized Crank-Nicolson finite difference system is solved
on the fine grid. Moreover, the algorithm uses a central difference approximation
for the spatial derivatives. In the time direction, the time derivative and integral
term are approximated by Crank-Nicolson technique and product integral rule,
respectively. With the help of the discrete energy method, the stability and space-
time second-order convergence of the proposed approach are obtained in L2?-norm.
Finally, the numerical results agree with the theoretical analysis and verify the
effectiveness of the algorithm.
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1 Introduction

In this paper, we consider the following two-dimensional nonlinear Volterra integro-
differential equation with weakly singular kernel

utfp,Aqu(o‘)Au:f(a:,y,t)Jrg(u), (xayat) E‘QX (07T]7 (11)
with the initial-boundary conditions

w(@,y,0) =¢(z,y),  (z,y) €2, (12)

u(z,y,t) =0, (z,y,t) € 002 x (0,T], '
where 2 = (0,Ls) x (0, L) with the boundary 92, A = 9*/9x* + 9%/0y? is
the two-dimensional Laplacian operator and u; = du/d¢. In addition, a € (0,1),
i € [0,00) and T € (0,00) are given constants. f(x,y,t) and ¥(z,y) are given
functions. The nonlinear term g(u) € C*(R) N L'(0,T] satisfies the Lipschitz con-
dition |g(u1) — g(uz2)| < Clui —uz|. Furthermore, The integral term I(®) Au(z,y, t)
is defined [IL2] as follows

t a—1
t
I Au(z,y,t) = / pa(t — s)Au(z,y, s)ds, pa(t)=——, t>0. (1.3)
0 I'(a)
In addition, throughout the article, we assume that problem (LI)-(T2) has a
unique solution such that the following regularity assumptions [3]:

(A1) ut, Utyy, Utos, Uszze and Uyyy, are continuous in 2 x [0, 77;
(A2) ugt, ugee, Uttze and Utryy are continuous in §2x (0,TY, and there exists a positive
constant C' satisfying for (z,y,t) € £2 x (0,T] that

lue(z,y, )| < Ct*7 1, luere (2, y,t)| < Ct*2,
|utt'€'€(x>y’t)| < C’tail(ﬁ' = a:,y).

Such integro-differential equations with Riemann-Liouville integral operators ap-
pear frequently in various mathematical and physical models. Problem (LI)-(L2)
is a commonly used model for studying physical phenomena related to elastic
forces. This model is mainly used in the problems of heat conduction, viscoelas-
ticity and population dynamics of materials with memory [4H6]. In viscoelastic
problems, the parameter p in this model represents the Newtonian contribution
to viscosity, and the integral term represents the viscosity part of the equation.

In recent years, high-precision computational methods for 2D partial integro-
differential equations with weakly singular kernel, such as equation (I.1]), have been
developed. The linear case of (LI)-(L2) has been deeply studied in the literature,
e.g., see [(H12]. Furthermore, some numerical studies on the nonlinear case were
introduced. Mustapha et al. [3] applied the Crank-Nicolson scheme under graded
meshes to solve semilinear integro-differential equation with weakly singular kernel.
Dehghan et al. [13] proposed a spectral element technique for solving nonlinear
fractional evolution equation. In addition, some numerical methods for nonlinear
partial differential equations have been proposed, and we can refer to the work
in [14H16].

However, when solving 2D nonlinear problems, the resulting large systems of
nonlinear equations require a large computational cost as the grid is continuously
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subdivided. In order to save the computational cost of nonlinear problems, a spa-
tial two-grid finite element technique was proposed by Xu [17,[1§]. Inspired by
Xu’s ideas, the two-grid method began to be intensively studied and applied to
the solution of nonlinear parabolic equations. Dawson and Wheeler et al. [I9] pro-
posed a spatial two-grid finite difference method in solving nonlinear parabolic
equations and analyzed the convergence of the method on coarse and fine grid.
For solving the nonlinear time-fractional parabolic equation, Li et al. [20] obtained
the numerical solution of this equation using the spatial two-grid block-centered
finite difference scheme. For more work regarding the spatial two-grid methods,
see [21H23]. In addition, some scholars, inspired by the spatial two-grid method,
started to consider using the two-grid method to solve the nonlinear equations
in the time direction. Liu et al. [24] proposed a new time two-grid finite element
algorithm in order to solve the time fractional water wave model, and illustrated
through numerical experiments that it has higher computational efficiency than
the standard finite element method. In [25], a time two-grid backward Euler finite
difference method is constructed to solve problem ([LI)-(T2). However, the time
convergence order of the above methods cannot reach the exact second order.

In this paper, we design an efficient temporal two-grid Crank-Nicolson (TTGCN)
finite difference method for solving problem (LI))-(T.2). In this approach, the time
and space derivatives are approximated using the Crank-Nicolson technique and
the central difference formula, respectively, and the Riemann-Liouville integral
term is approximated by the product integration rule designed in [26]. Then, this
algorithm is divided into three steps: First, a small nonlinear system is solved on a
coarse grid. Second, based on the solution of the first step, the values of each node
are obtained by linearization technique as the auxiliary approximate solution. Fi-
nally, we approximate the nonlinear term g(U™) by a Taylor expansion and solve
the linear system on a fine grid. Furthermore, under the regularity assumptions
(A1) and (A2), we prove that this algorithm is stability and the convergence of
order O(Té + 7'}27 +h24 h%), where 7¢ and 7F are the time steps of the coarse and
fine grid, respectively. Also, the linearization technique is used on the fine grid,
so the TTGOCN finite difference algorithm has the advantage of both ensuring ac-
curacy and improving computational efficiency. In addition, the numerical results
in this paper show that the TTGCN finite difference algorithm is more efficient
than the standard Crank-Nicolson (SCN) finite difference method without loss of
accuracy. Meanwhile, our algorithm can achieve second-order convergence in time
compared to the method in [25].

The remainder of this paper is structured as follows. In Section Bl we give
some notations and useful lemmas. Then, the TTGCN finite difference scheme
is established in Section Bl In Section M the stability and convergence of the
TTGCN finite difference method are analyzed by the energy method. Moreover,
some numerical results are given in Section

The generic positive constant C is independent of the temporal step size and
the spatial step size, moreover, it is not necessarily same in different situations.

2 Preliminaries

In this section, we shall provide some useful notations and lemmas which will be
used for the forthcoming work. First, for a positive integer A/, we define the time-
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step size on the fine grid as 7 = 7p = T/N with t, = n7p(0 < n < N). Similarly,
for the coarse grid, the time-step size is ¢ = T/N, ts = s7¢(0 < s < N) for
positive integer N, where N = N'/k, k > 2 and k € Z*. For any grid function
©"(1<n<N)on (0,T], we define

RPN . — Qs oty
Then, we define the grid functions as following

n

u :u(xyyytn)7 fn:f(‘r7y7tn)7 OSTLSN
We integrate the equation (L)) from ¢ = ¢,—1 to t, and then multiply by %, we
obtain

29 ty
s —E / Al t)dt— 1 / 1 Au(-, t)dt
T T

tn—1 tn—1

7 f(~,t)dt+% 7g(u(«,t))dt.

1
=7
th—1 tn—1
(2.1)
To approximate the integral term of equation ([21)), from [12,[26], we obtain

the quadrature approximation with the uniform time step

tn Aut + (R1)*
1 Au(-,t)dt = \ ’ 2.2
Ttnf_l utt Au"T2 + (R, 2<n <N, 22)
and
tn
L[ 1 Au(, t)dt =
tn—1
t t
L[ [ pa(t—s)Au'dsdt + (R2)",
to to
(2.3)
tn
L] [palt— s)Autdsdt
tn_1to
tn n  min{t,t, } .
+L [ > | palt —s)Au™"2dsdt + (R2)", 2<n<WN,
thno1 M=2  ty,_

where (R1)™ and (R2)™ are the local truncation errors.
For any grid function ¢™(1 < n < N), we define the following two operators

1
n ny _ )P
1,7'(()0 ) - {@n_;, n Z 27

w11, (2.4)

an ny _ n
2,7‘(90 ) mn,lipl + Z mn,m‘PM7%, n Z 2’
m=2
where
t, min{t,t,,}
1
Wnm = — / / pa(t — s)dsdt. (2.5)
T

th—1 tm—1
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Therefore, for n > 2 and 1 < m < n — 1, we can get that

tn  tm
mn,m = / / pa(t — s)dsdt
th_1t

m—1

[(tn = tm=1)""" = (tn = tm)* ] = [(tn—1 = tm—-1)*"" = (tn—1 — tm)*"]
I'2+a)

(2.6)

and
/ / pa(t — s)dsdt = ( Teta) 1<n<WN. (2.7)

Then the equations (22) and (23) can be rewritten as follows

ty
! / Au(-,t)dt = £, (Ad™) + (RD)",  1<n <N, (2.8)
tn—1
tn
1 / I@Au(,t)dt = £2. (A" + (R2)",  1<n<AN. (29
-
tn—1

For the spatial approximation, defining the space-step size h1 = Ly /My, ho =
Ly/My, h = max{hi, ha} for two positive integers M, and M, we arrive at x; =
ih1 and y; = jha. Denote 2, = {(z4,y;)[0 <1 < My,0 < j < My}, 25 = 2,0 02
and 982, = 2, N IS2. Let the grid function Zp = {z;;|0 < i < M,,0 < j < My}
on {2, then we denote the following notations

5 _ Zit1,j = Zij 525 — 0aZiryj —OoZiy,
=2t) =
'L-i,- ] hl bl xr~t) hl bl
5 _ Zij+1 — Zij 524 Oy2 j41 — OyZy 1
vFigts T ha ’ vHi = ha

Also, the discrete Laplace operator is defined by Ay, = §2 + 65.

Then, for any grid function z,v € §2;,, some norm and inner product are defined
as follows

»—1 M,—1
uw-mm}j}:%%,nn—mz@ el =, mpx [l
1<]<M
M,—1M,—1 e—1My—1

|mwmm22w%wnmwmm22wmﬁ

Next, some auxiliary lemmas will be given.
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Lemma 1 [27] Suppose g(u(-,t)) € C*(R)N L*(0,T), then it holds that

on tn - tn—l (tn - tn—1)3 "
gul,)dt = = g, ) + gluta1))]| < g o,
tn—1
where [lg"llo = sup 19" (u(-,€))] < oo.
E€E(tn—1,tn)

According to Taylor series expansion with integral remainder term, we can obtain
the following lemma.

Lemma 2 [28] Assume v(z,y) € Cay([0, L] x [0, Ly]), then it satisfies that

) 2 h? [ilo% o*v 3
9% 2 hZ o v 3
S twen) = G52 [ S urwhe)+ 5oy —wha) (1w du,

For further analysis, we present the following important lemmas.
Lemma 3 Assume that the solution u of the problem (I1])-(1.2) satisfies the reg-
ularity assumptions (A1) and (A2), then we obtain that

I(RD)™|| < C72, 1<n<N.
1

\]
NGE

Proof Through simple calculation, we yield

t1

(R1)! = %/ (A1) — A at (2.10)
(R1)" = % ] [Au(-,t) - (?Au"* + %mﬂ)} dt. (2.11)

Using Taylor expansion with integral remainder term, we have

ty
Au(-,t) — Aut = Au(-,t) — Au(-,t1) = —/Aus(-,s)ds, to <t<ti, (2.12)
i

therefore
t b t s t
(R1)' = —%//Aus(-,s)dsdt: —%//Aus(-,s)dtds: —%/SAUS(-,S)dS.
tg t to to to

(2.13)
The continuity of u¢wx(x,y,t)(k = x,y) in 2 x [0,T] implies

7|[(RD)Y|| < C7°. (2.14)
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Similarly, from Taylor expansion with integral remainder term, we obtain

tn
<27 / |Auss (-, 8)|ds, n > 2,

th—1

t—tn—
n 1Aun
T

tn —t

'Au(-,t) — Au™mt -

(2.15)
then

tn tn

t,
/ / |Auss (-, 8)|dsdt < Cr / s Mds = CT(tS —t2_1). (2.16)
tn—1tn—1 tn—1

This proves
n

Y IR)™) < CrP(ty — t7) < O7° (2.17)
m=2

The proof is completed.

Lemma 4 Suppose that the solution u of the problem (I1)-(12) satisfies the
reqularity assumptions (A1) and (A2). Then we can obtain the following

T3 (R)™<C7% 1<n<N. (2.18)

— ﬁMS

1
Proof See the case (v =1) in [26], or Lemma 2.2 in [12].

Lemma 5 [28] For any grid function v,w € Zy, then it holds as follows

M,—1M,—1 M,—1M,—1
7h1h2 Z Z ((5 U” w” —hlhg Z Z ((5 Uz+ J 5 wZJr_J)
z—1 My—l z—1 My—l

—hiha Z Z 5, Uzg)ww—hth Z Z yUzJ—',- (6 wzg+ )

Lemma 6 [2,[26] For any grid function v™(1 < n < N), it holds that
N
(Vav!, £ (Viv™) + 3 (Vav" 2,88 (Vav™)) >0, (2.19)
n=2
where £5 . is presented via (23)) and the operator Vi = 65 + 0y.

Lemma 7 [2] For N > 1 and v" € Zp, we have
N
r(@how!) 41 X (v Esen) = 4 (oM - ). (2:20)
n=2

Lemma 8 [29] (Discrete Gronwall’s inequality) If {Qm} is a non-negative real
sequence and satisfies

m—1 _
n=0

where {ym} is a non-negative and non-descending sequence, ,én > 0, then, we
obtain

m—1 _
Qm < Am exp( ZO Bn), m > 1.
n—
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3 Establishment of the two-grid difference scheme

In the following, we first establish the SCN finite difference method for nonlinear

problem (1))-(T2).
Applying the quadrature approximations (Z2)-(23) and Lemmas [Mi2, then

@I) become

Q(Uzlj) +9(Ugj)
2 (3.1)
+ (R1)i; + (R2)i; + (R3)i; + (R4)ij, (zi,y5) € 2,

1 1 1 1
dtui; — pApui; — w11 Apu;; = bi; +

n n n—1
n—y 1 m—1 g(uiy) + g(ui )
Seully — pApuy; * — i Apuly = 3 wnmApuly F = b 4 T2

m=2

+ (R1)3; + (R2){5 + (R3)i; + (R4)3, (%5,95) € 2n, 2<n<N,

(3.2)
uz; =0, (z4,y5) € 042, 1<n<N, (3.3)
uly = v(@i,y), (@) € O, (3.4)

where

2%
n 1
bij = pu / f($i7yj,t)dt,
th—1

w1 [t g(uy) + gluii™)
(m3)y =1 [ gtutwn,ys,nar - TETE 2 o),

(R4} = L7 (Auly — Apuly) 4 €5 -(Auly — Apuly) = O(h3 + h3).

Omitting the truncation errors (Rs)7;(s = 1,2,3,4), 1 < n < N, and replacing
ug; with U}, we obtain the following SCN finite difference scheme

v 9(UH) +9(UY)

5tUi1j — ,uAhUilj — m171AhUilj = bij =+ 5 s (:Ei,yj) €, (3.5)

1 n _1 g(U) +g Ui"-f1
SUfs — pARU 2 = wn 1 AU — Y wnm AU 2 = by + %) 5 G ),
m=2

(zi,y;) € 2n,  2<n <N,

(3.6)
Ujj =0,  (zi,y;) €02, 1<n<N, (3.7)
Uy = (@), (2i,95) € . (3.8)

In order to solve ([B.5)-([B.8) efficiently, we develop the following TTGCN finite
difference method, which is divided into three steps.
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Step I.

Step II.

Step III.

On the coarse grid, we only calculate ks-th level, 0 < s < N. Similar to the
establishment of equations ([B.0)-(3.6]), the discrete scheme on the coarse grid
is constructed as follows

9((Ue)E) + 9(Ue)Y)

8:(Uc) i —puAn(Uc)ti—w11 An(Uc)s; = bij+ 3 ,

(zi,Y5) € 20,
(3.9)

s s—1)k ® -3k
(St(UC)wk — ,LLAh(UC)EJ ) — ms,lAh(UC)ﬁj - Z ms,pAh(UC)g )
=2

o 9(US)) + g((Ue) %)
= bij +

2 )

(a:i,yj)EQh, 2<s<N.
(3.10)

Then, based on the solution (Uc fjk obtained in the Step I, applying Lagrange

linear interpolation to calculate (UC)E;_l)k+q by points (t(s—1)x, (UC)Ej_l)k)

and (tsg, (Uc)fjk) direction on the coarse grid, with 1 < ¢ < k — 1, we have
EUC (t(871)k+q) _ Ués—l)k‘i‘q
_ t<:71)k+q ;tsk Uésfl)k + t<$;1)k+qt7 t(sfl)k Ué'k
(s—1)k — lsk sk — U(s—1)k

:u—%ﬂﬁ”w+%u$ 1<s<N, 1<q<k-—1.

(3.11)

Finally, according to (UC)?J- obtained in the Step II, the linear Crank-Nicolson
finite difference scheme on a time fine grid is obtained by

5t(UF)zlj — NAh(UF)%j — ml,lAh(UF)zlj
= bl + 59(UR)) + 5[0l + ¢ (W) (U - Wo)h) |, (3.12)

(mhy]) € Qh?

S (URY — AU — 1o 1 AU}l — 3 1on AU
= bij + %g((UF)?j_l) + % [9(Ue)) + 9 (W) (U = (o)) |

(zi,y5) € 2, 2<n<N.
(3.13)

4 Analysis of the two-grid difference scheme

Next, based on the TTGCN finite difference scheme ([B.9)-B13), we will analyze
the stability and convergence of the scheme under the regularity assumption (A1)
and (A2).
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4.1 Stability

We use the energy method to establish the stability of the TTGCN finite difference
scheme. First, consider the case on the coarse grid.

Theorem 1 The fully discrete scheme [B.9)-@BII) on the coarse grid is stable.
Proof Let (Uc);F be the approximation solution of (Z9)-(@I0). Thus, we get

9((Ue)) + 9((Uc)y)
2 T (4.1)

5t((~fc)§j - MAh(0C)§j - 1’01,1Ah((70)§j = b'lfj +
(zi,Y5) € {2,

- s ~ s—1 ~ —3)k

(5t(UC)Uk 7ﬂAh(UC)Ej *ms lAh(UC st pAh (P )
(4.2)
NS (s 1k

Uc)%) + g((Ue
g UIOD T D e, 2<ssn

Subtracting (@I)-@2) from E9)-EI0) and defining ec = (Uc)iy — (Uc)iF, we

get

Bi(z0)ly — mAn(ec) — w11 An(0)ly = 5 [9(U0)y) — o((T0))y)]

. . . (4.3)
+5 (9% = 9(@e))] . @iu) €

2k

s s—5 )k
Se(ec)i) — /J‘Ah(gc)gj

— 15,1 An(e0)5) — st,pﬂh(EC)(p 2

1 sk 7 \sk 1)k 1k (4.4)
= 5 [0y — a(@e))] + 5 o) ™) — a(Te) 5]
(l‘i,yj)GQh, 2<s<N.
We will prove this theorem in two steps as follows:
(I) Taking inner product of both sides of {3) with & and multiplying it by 7¢,
we yield
TC (5t515,815) —Top (AhEIf:,EIf:) — Tow11 (Ahilfr,eflf:)
C > e r
= 22 (gU) — 9(08), &) + 7 (9(UE) — 9(08),28) s (wiru5) € 2
(4.5)
(s— 1)k

For (4.4), taking the inner product of both sides with e , multiplying it
by 7¢, and summing for s from 2 to N, we obtain

N N 1 1 N 1
Soro (ieth el ) = 3 e (Anel TP ST © S waare (Anek 2l
s=2

5=2 s=2
1 N - s—1
- ZTC stp (Anel™ "7 0) = 30 T8 (gt - 908, 20"
s=2
+ZTC( UE = g@E ™), @am) € B 2<s<N.

(4.6)
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Then adding the above two equations together gives

Ha+ Mo+ Ha = 2 (g(UE) — 9(08),¢8) + = (9(U8) - 9(02), <8

2
N 1
+Z (9Ue) — a(0E),2E7") + 30 T2 (aWE™) = 9026727,
s5=2
(4.7)
where
N
Uy = 5k’k+ 5sk’5)’
1 TC( tEC EC) ;TC( teC € )

N _1 1
HQ = —TCH (Ahsgﬂglé) - ZMTC (Ahg(cf 2)k78g Z)k) )

Hsz =— Toto1,1 (AhEIaE](C?) st 17e (Ahslf;, o )

_ ZTC Z W p (Ahs(p_ )k,s(cs_l)k)

Below the terms Hq(q = 1,2, 3) will be estimated one by one. First, for H1, we
use Lemma[7] to obtain

i > 3 (I8P~ 1) (4.8)

Second, from Lemma [B] we obtain

Ho = pre (Vhﬁl&vhﬁg) + il“'c (thé‘ 'V Cfi_)k)

5=2

(4.9)
k
= el VaE I+ 3 el sl 2 0
s=2
Finally, for the third term Hs3, we use Lemma[5] and Lemma 6] to get
al (s—3)k
Hs = TCW1,1 (Vhslé, Vhsé) + Z s 17C (VhEC,VhECf )
s=2
SRS ® (s— )k
+ Z TC Z s p (VhEC Vh )
s—— k
=Tc1,1 (Vhé‘c, VhEC) + ZTC (ms 1Vh60 + Z ms,pvh Vh ( ) )
= p=2
(s— —)k:

= TCoW1,1 (VhECa VhEC) + ZTC (£5,,Vied , Viheg ) > 0.

s=2

(4.10)
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Next, g(u) satisfies the Lipschitz condition. For ([&7]), using Cauchy-Schwarz
inequality, we have

<817 = 1<

< re [lg(Ue) - g(@8)||||o& ]| + 7 Hg(U8> g0 |5

+ZTCH9(UC — g(U] HH H+ S e Hg(Uésfl)k)_g(Uésfl)k)H Hg(g—g)kH
=2

Al S e 674
+Z

(4.11)

<o (o] + ][4 + 2

Now, taking the positive integer m such that HECkH = ina%xN ”E ” we have

le&*Il < 18] < lle&ll + Cre (HECH - HEC\

!+zu )

> |

< le&ll + Cre (HﬁcH - HEC

< e8] + Cre (Z Haéﬂ
s=0

’“)

< |le2 | + Cro ||| .
(4.12)
When 7¢ < 55 C, following from Lemma[8 inequality (£I12) becomes
1e5*]l < C(T) ||| exp{NTc} < Cllec |- (4.13)

(IT) Notice that according to (I) we have ||[U&*|| < C for any 1 < s < N. Then we

estimate the ||Ué$71)k+q|| for1<s< Nand1<qg<k—1. Considering (ZIT)
and applying the triangle inequality, we obtain

s—1)k s—1)k q;:s s—1)k q s ~
jUE ) = 11— Hug TV + Juetl < - DIvE™VM ) + Hiuel < &,
(4.14)

which completes the proof.

In addition, we shall analyse the stability on the fine grid.

Theorem 2 For the system [BI2) and EI3) on the fine grid, with 1 <n <N,
we have ||Ug|| < C.
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Proof Taking the inner product of I2) with 77U}, we have

7 (8:Uk, UR) — pre (AnUB, UR) = o1 (AU, U)
=7 (0", UF) + 55 (90, Uk ) + I (90&) +g' (&) (Uk - V&) UE).
(4.15)

_1
For (3I3), taking the inner product of both sides with U; 2 multiplying it
by 7F, and summing for n from 2 to N, we get

N N ) N

;TF (6tUF,U; ) —;TFN (AhU; Q,U;_Q) — ;mmm (AhU},U; )
N n L N L N

=3 Y wnp (AR U = 3w (00U ) + >0 T (gUET, U )
n=2 p=2 n=2 n=2

+7§2%F (g(Uc’?)Jrg/(US) (U?—US),U;”)a (zi,y5) € 20,  2<n <N,

(4.16)

Then, adding ([£15) and ([4I6]), and similar to the analysis of (£.0)-(@I0), we

obtain

JUX |12 — |Ug|?

N 1 N 1
< 2re |6 UEN +2 Y relb" 11U 2 |+ rellgURINURI+ Y- 7o lg@EHIIUE |
n=2 n=2
+ 7ellgUONITE + rrllg' (U&) (UF - UL) IITE
N . N .
+ Y mrellgUENNUE* |+ Y rlly' (U&) (UF - UE) U5
n=2 n=2

(4.17)

Based on the stability of the coarse grid, |U&| < C(0 < n < N) can be
obtained. Then according to g(u) € C*(R) N L*(0,T], we have g(U&) < C and
g (U&) < C. Also, assuming ||U%|| < C holds for 0 < n < N — 1, then g(UR) < C
can be obtained, thus

N

N n -1 _
JURIZ = ORI < 2ep b TR +2 S w172 |+ G U
n=2
_ N _1 _
+C Y Tl UR T+ Cre (WA + VRN IUR (418)
n=2
N

+C Y e (IR + 1SN 1UE 2l

n=2
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Denoting ||[UR|| = [ max |UEl, we can get

-~ m 1 — — n 1
IUE1* < |UR|* +2rpllb" 1|UFI +2 ) e " 11U 21l + CrellUrll +C Y rrlUp 2|

n=2 n=2

1

+ Crp (IUB + |U&) UK +C 3 7 (WURN + (U 1052 |
n=2

< NURINUE |+ 2rellb" WUE | +2 Y wellb™ [|UF | + Cre|UR + C Y me|UR|

n=2 n=2

+ Crp (IR + WU VRN +C S 7 ([UR]+ TSI [T

n=2
(4.19)
Then
N m s n ~ i ~ s n n
IUF | < URI < NURI+2) 7rllb™ | +C > me+C > e (IUE| + IUEI)
n=1 n=1 n=1
N B N ~ N
SNURI+2) 7o+ C> e+ C > e (URI+ IUE]) .-
n=1 n=1 n=1
(4.20)

When 77 < 75, from Lemma B and Theorem [ inequality (.20) turn into the
following

N N N
U] < C(T) exp(N7r) (IIUf%II IR E DY TF||U8||> <C.
n=1 n=1 n=1

(4.21)

This finishes the proof.

4.2 Convergence

The convergence of TTGCN finite difference scheme (3.9)-(3.11) on coarse grid
will be analysis using the energy method. Let

(GC)Z:'“:LJ*(UC)?W (1‘171/])6(2}1’ OSTLSN

Subtracting (39)-@BI0), B1)-BS) from @BI)-B4), respectively, we obtain

the following error equations

ulea)ly — ndn(ee)ls — miadnea)ls = 5 [o(uls) — g(Ue)E)

+ 5 90 = o] + B, (@0 €

(4.22)
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3)

s s—3)k 3)k
5t(ec)i]]-c — /JfAh(eC)Ej — 105,14 ( ec)” Z ms,pAh(eC)(P

) . (4.23)
= 2 o) — a(We)i)] + 3 [atuls ™) — 9(We)§ )] + (3,
(i, yj) € £2n, QSSSM
(e0)ij =0,  (wiy;) €02, 1<n<N, (4.24)
(ec)i; =0, (Ti, y;) € £2n, (4.25)

where (R) = (R1) 4+ (R2) + (R3) + (R4).

Theorem 3 Assume that u(x,y,t) and UG are solutions of B1)-B2) and 3.9)-
BI0), respectively, and that u(x,y,t) satisfies the regularity assumptions (A1)
and (A2). Then, it holds that

P_UB|<CEE+hE4+h3), 1<n<.H.
lgnrllzg(ﬂﬂu UG\ < C(1é + hi + h3), <n<W¥

Proof The proof of this theorem is divided into two steps:
(I). Taking the inner product of equations @22) and @23) with ef and

— e
(e=3) respectively, and multiplying both equations by 7¢, summing for s from

2 to N in (423) and adding ([£.22]), then we can obtain

Hi+Ho +Hs = (g(u ) — Q(UC) ec) TC (g(uo) _ (U2, e’f;)
+ Z (g(u (Ué,k) (s— 2)k) 4 Z 7'7(7 (g(u(s—l)k) _ g(Ués_l)k ’e(g_%)k)
—I—Tc( )+i70( sk (87—)19)7

o (4.26)
where

Hi = T1C (5t€]57615) + iTc (51560: - Q)k) )
s5=2

Hi=—Tcp (Ahec,ec) ZMTC (Ahe(s_i)ka (c?_i)k) ,

Hz = — Tco1,1 (Ahec,ec) st 17TC (Ahelf;, (S_f)k)

- Zm st,p ( e 2)’“,623“”“) .
b=
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For (£24), applying Lemmas and Cauchy-Schwarz inequality, we get the
following inequality

Nk2 012
llec™|I” = llec|
k k k 0 k
< 7ellg(u®) — g(Uellec || + rellg(u’) — g(Ue)|lllec ||

N N
s s S_‘)k s— s— (S_%)k
+ 3 rellg™) — gUElles > 1+ D" rellg@® %) — g(UE M) lles "

N
k k k (s—1)k
+2rel|(R)*(llleéll +2 ) mell(R)*lllec =l
s=2
s—1)k al (s=1)k) (s—1)k
llec:)1* +||€c||||€c||+Z||€ e ™ I+ 3 el e ™"
s=2
- (=)
kyyp ok k(53
+2rel|(R)*(lllecll +2 ) mell(R)*lllec =l
s=2
(4.27)
Choosing a positive integer 5 such that ||ef¥|| = o AX, lles¥| and noting that

([#24), then we have

led® || < lle&F|| < Cre (||ec||+2||e ||+Z|| & 1)k||)+2270|| (R)™|
s=2
(||ec||+2||e [ +Z|| & ”’“n) +QZTC|| (R)™|
B N
< Cre (Z e+ > ||<R>S’“||> :

s=1 s=1
(4.28)
Using Lemma [§] then ([@28) becomes the following
B N
lec*|l < C(T) exp{NTc} (Tc > ||(R)Sk||> : (4.29)
s=1

In addition, from Lemmas [l and using triangle inequality, we can get the
following estimates

N
TC Z I(R)™ =7 IR R2)™ + (R3)™ + (R4)™|

N 4.30
<70 > (IRD™ |+ I(R2)™ || + I1(R3)™ | + |(Ra)™])) .

< C(T)(7& + hi+ h3).
Finally combining ([£.29) and ([430), we have

e]| < C(T)(7& + hi +h3), 1<s<N. (4.31)
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(IT). Forany 1 < s < N and 1 < ¢ < k—1, we utilize the Lagrange’s interpolation
formula, then

u(s—l)k—"-q _ (1 _ %)u(s—l)k + gusk

k
u//
+ 2(5) (t(s—1)k+q — t(s—1)k) (E(s—1)k4q — Lsk), £ € (ts—1)k» tsk)-
(4.32)
Subtracting (311) from (£32), we have
. . !
el TR = (1~ %)e(c Dk %eék + 2(5) (t(s—1)k+q — ts—1)k) (E(s—1)ktq — tsk),
then, applying the triangle inequality and (£.31]), we obtain
1"
(s=Dktay < (1 _ Dyjol=0k 4 Lygsky o 18 (Ol 2
e+ < (1= Lyl 4 Ly 4 1= )

<C(ré+hi+h3), 1<s<N, 1<q<k-L
The proof is finished.
Next, the convergence on the fine grid will be considered. Let
(er)is = uiy — (Ur)is, (xi,y5) € On, 0<n<N.

Subtracting (B.12)-BI3), B1)-BR) from @BI)-(B.4), respectively, we yield the

following error equations
1
6e(er)ly — nAn(er)l; — w11 dnlen)l = 5 [9(udh) — 9(URY)]
1 ’
+3 [9(uly) = 9(U)y) = ¢ (We)) (UR)h = We)l)| + (Bl (@ivws) € n,

(4.34)

_1 n _1
5t(eF)?j - /J’Ah(eF)Zj 7 — mn,lAh(eF)zlj - Z mn,pAh(eF)Z' 2
p=2

= 5 [0 — o] + 5 To) - o)D) — o' (WD) (Ur)Y — We))]
+ (R, (ziy) €2 2<n <N,

(4.35)
(er)ij =0, (zi,y;) € 0L2n, 1<n<N, (4.36)
(er)ly =0,  (wi,y;) € 2. (4.37)

Theorem 4 Assume that u(z,y,t) and Up are solutions of B1)-B2) and BI12)-
BI3), respectively, and let u(z,y,t) satisfy the regularity assumption (A1) and
(A2), then we have the following

ekl < C(re +7& +h2+h3), 1<n<N.
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Proof Taking the inner product of ({f-34) with Tpey, we obtain

T
TF (6756}776}7') — UTF (Ah@}:‘,E}T‘) - ml,lTF (Ahe}‘—'ve};‘) - 7F (g(uo) - g(U?’):e}‘—')

+ I (g(u) ~ 9(U&) — ¢ (U&) (Uk = UE) k) + 70 ((R)' k) -
(4.38)

1
2

Then taking the inner product of equation [{.39) with TFeZ:
form from 2 to N, we can get

and summing

N ol N nel p_1 N . n-1
ZTF (5te%,eF 2) — Z,m-p (AheF 2 ep 2) - Z W 1TF (Ahep,eF 2)
n=2 n=2 n=2
N < p—% n-1 TF N 1 1, n—3
=S e > (Aneh ter ) = 2N (gt — g e ?)
n=2 p=2 n=2

+ 5 i (9u™) = 9((Ue)") - 4/ (U2) (VR — U8) e *) + f: e ((R)"ef2).

n=2

(4.39)

Adding [£.38) and {{-39), then using Lemmas[B{7, Cauchy-Schwarz inequality
and triangle inequality, and noting ([£.36), we can get

le)1” < rllg(u’) = g(U&) - ¢'(U&) (UF - U) llllekl + 27wl R ek |

N 1
+re 3 o) = 9(U8) o' (U2) (VR ~ U2 ey | (140)

N 1 N 1
= 1 n—s n—:
+Cre Yl ller 2l +2> mrl(R) " lleg 2|
n=2 n=2

Choosing a suitable 5 such that ||ek| = max |||, then it holds
0<n<N
v . N
e |l < llekll < 7r ) lg(u™) = g(US) — ¢'(UE) (UE - US) ||
n=1
" Ny (4.41)
~ n—1 n
+Cre Y llep I +2 Trll(R)"-
n=2 n=1
According to Taylor expansion, we have
g(u™) = g(Ue) - ¢'(U&) (UF - U&)
n n n 1 n n n n n n
=g'(U8)(u" = UE) + 59" (0") (u" — Us)?* - ¢ (Us)(Up = U&) (4.42)

n n 1 n n n . n n n n
:g'(Uc)eF+§g//(9 )(ec)Q, 0" € (mln{u , UG}, max{u ,Uc}).
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Substituting ({-42) into ({-41]) and applying the triangle inequality, we can get

N N N
N = = _
e |l < Cre Y _(llekll + lecl®) + Cre >l +2 > rll(R)"|
n=1 n=2 n=1

e o Ny (4.43)
<Crp Yy llekll+Crr Y lletl* +2 Y 7rll(R)"-
n=1 n=1 n=1
Utilizing Lemma[8 and Theorem[3, we yield
B N N
le || < Cexp{N7r} (TF Dolledl*+ TFll(R)"H)
=1 =1 (4.44)

gC(Té+T%+h%+h§),

which completes the proof.

5 Numerical experiment

In this section, we will use the TTGCN finite difference scheme (B9)-BI13) to
solve problem (LI)-(L2)) and apply the method to three test problems. In order
to verify the validity of the method, we also compare the results obtained from
proposed scheme with the existing methods, e.g., the SCN finite difference scheme
B3)-38) and the scheme [25]. We set Ly = Ly = 1 and T = 1. All experiments
are performed on a Windows 11 (64 bit) PC-Inter(R) Core(TM) i5-12500H CPU
3.10 GHz, 16.0 GB of RAM using MTALAB R2021b.
The discrete L2-norm error is defined as follows

Errgen(h,T) = ax lu™ — UF|,

and the time-space convergence orders are defined by

Errcon(h,27)

Errcon(2h, T))
Erraen(h,T)

, ratey =1lo
) TTGCN g2 ( ETTGCN(h,T)

raterraon = log, (

In addition, we can similarly define Escn (h,T), rateben and ratefe .
Ezample 1 We consider the nonlinear term is given by g(u) = —u?, =1 and the
inhomogeneous term is
_t
I'a+1)
a+1 2
-+ (1 -+ m SiIl7I'IL'SiIl7I'y) .

The exact solution of this problem is presented as follows

ta—',—l t20¢+1
Tat2) Tat2)

flz,y,t) = {(l + 2m) + 272 (l + )} sin mz sin 7y

ta—',—l

m) sin 7 sin Y.

u(z,y,t) = (1 +
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Table 1 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and k = 4
for Example [I1

@ Tc TF Errcen  ratebroon  CPU(s) Escon rateb .y CPU(s)
1/2 1/8 2.9293e-2 * 41.42 2.9294e-2 * 83.85
1/4 1/16  9.9431e-3 1.5588 75.53 9.9431e-3 1.5588 159.79
0.25 1/8 1/32 2.9743e-3 1.7412 176.76 2.9743e-3 1.7412 307.44
1/16  1/64  7.7382e-4 1.9425 439.63 7.7382¢e-4 1.9425 696.57
1/2 1/8 1.5390e-2 * 35.26 1.5391e-2 * 83.48
1/4 1/16  4.2211e-3 1.8663 77.16 4.2212e-3 1.8664 160.76
0.5 1/8 1/32 1.0102e-3 2.0630 177.43 1.0102e-3 2.0630 304.59
1/16 1/64 2.0588e-4 2.2948 441.57 2.0589¢e-4 2.2948 700.46
1/2 1/8 7.7023e-3 * 35.64 7.7034e-3 * 83.19
1/4 1/16 1.7363e-3 2.1493 77.64 1.7364e-3 2.1494 159.14
0.75 1/8 1/32  3.3266e-4 2.3839 176.50 3.3266e-4 2.3840 309.35
1/16  1/64  9.3963e-5 1.8239 414.11 9.3963e-5 1.8239 681.68

Table 2 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and
a = 0.5 for Example [Tl

k TC TF Erraon rate%‘TGCN CPU(s) Escn rategCN CPU(s)
1/3 1/6 2.5490e-2 * 40.93 2.5490e-2 * 61.24
1/6 1/12  7.3298e-3 1.7981 83.19 7.3299e-3 1.7981 120.88
2 1/12  1/24 1.8622e-3 1.9767 181.48 1.8623e-3 1.9767 232.67
1/24 1/48  4.0706e-4 2.1937 391.92 4.0706e-4 2.1937 474.09
1/2 1/6 2.5489e-2 * 31.25 2.5490e-2 * 61.91
1/4 1/12  7.3297e-3 1.7980 65.04 7.3299e-3 1.7981 120.44
3 1/8 1/24  1.8622e-3 1.9767 142.96 1.8623e-3 1.9767 232.99
1/16  1/48  4.0706e-4 2.1937 320.59 4.0706e-4 2.1937 479.59
1/2 1/10  1.0281e-2 * 40.04 1.0282e-2 * 107.69
1/4 1/20  2.7071e-3 1.9252 89.51 2.7071e-3 1.9253 198.24
5 1/8 1/40  6.1692e-4 2.1336 214.16 6.1693e-4 2.1336 389.39
1/16  1/80 1.1915e-4 2.3723 531.10 1.1915e-4 2.3724 913.59

In Table[d] we obtain the corresponding discrete L?-norm errors, time convergence
order and CPU time by calculating Example [[l with the TTGCN finite difference
scheme (39)-(BI3) and the SCN finite difference method ([B5)-(3.8). The numer-
ical results show that the convergence order of the two schemes converges to 2 in
the time direction, which is consistent with the theoretical analysis. Meanwhile,
we compare the numerical results of the two methods in terms of temporal con-
vergence order and computational cost (CPU time in seconds), and see that the
TTGCN finite difference scheme can save computational cost significantly without
losing computational accuracy.

In addition, by the results in Table 2l we can see that the TTGCN finite
difference scheme will save more computational cost than the SCN finite difference
scheme as the value of k increases.

When the time step 7¢ = 1/128 and 7 = 1/512 are fixed, in Tables B] the
convergence order of the two schemes in space is 2 according to the numerical
results. Therefore, the convergence results in the space-time direction are in good
agreement with the theoretical analysis.
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Table 3 The L2-errors and convergence rates with 7c = 1/128 and 7 = 1/512 for Example
m

« h Errcen  ratefopaon Escon rate$ oy
1/2 3.8785e-1 * 3.8785e-1 -
1/4 9.1992e-2 2.0759 9.1992e-2 2.0759
0.20 1/8 2.2621e-2 2.0239 2.2621e-2 2.0239
1/16  5.6309e-3 2.0062 5.6309e-3 2.0062
1/32  1.4061e-3 2.0017 1.4061e-3 2.0017
1/2 3.5774e-1 * 3.5774e-1 *
1/4 8.4731e-2 2.0780 8.4731e-2 2.0780
0.50 1/8 2.0830e-2 2.0242 2.0830e-2 2.0242
1/16  5.1848e-3 2.0063 5.1848e-3 2.0063
1/32  1.2945e-3 2.0018 1.2945e-3 2.0018
1/2 3.2854e-1 * 3.2854e-1 *
1/4 7.7643e-2 2.0811 7.7643e-2 2.0811
0.80 1/8 1.9081e-2 2.0248 1.9081e-2 2.0248
1/16  4.7487e-3 2.0065 4.7487e-3 2.0065
1/32  1.1855e-3 2.0020 1.1855e-3 2.0020
700 : : . . . —
---8---0=0.25 (TTGCN) y
2=0.75 (TTGCN) 7
600 || - —— - 4=0.25 (SCN) 1
—%— a=0.75 (SCN)
500 1
— 8
2 =
T 400 - e 4
£ ’
=)
o 300 ]
[8)
200 F 1
100 | 1
0 . . . . . .
0 10 20 30 40 50 60 70

Fig. 1 The comparison of two methods for CPU time with h = 1/100 and k = 4 for Example
m

Fig. 1 compares the computation time of the two-grid method and the standard
method in the time direction for the Crank-Nicolson finite difference scheme. It can
be observed that the computational cost of the TTGCN finite difference method
is lower without losing the accuracy. Also, Fig. 2 gives the L?-norm error for both
methods, which can show intuitively second-order convergence for time.

Ezample 2 we consider g(u) = —u— u? and p = 1. The exact solution is given via

toe+1

u(z,y,t) = T

Toc) sin wa sin my,
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10t w
———-Order=2
a=0.25
—+—a=0.50
—6—a=0.75

102 F

10° F

L2 norm error

104

1/64 1/32 1/16 1/8

e

Fig. 2 The time convergence order with h = 1/100 and k = 4 for Example [I}

thus, ¥ (z,y) = 0 and the corresponding force term can be obtained as follows

ta (271_2M+ 1)ta+1 t2a+1 ) )
t) =
flx,y,t) <F(a+1) Ta+t2) TZa12) sin 7 sin 7y
ta+1 3
+ (m Sil’lﬂ'l‘Sil’lﬂ'y) .

In Table M we give the numerical results with o = 0.25, 0.5 and 0.75 calculated
using the TTGCN finite difference method and the SCN finite difference method,
respectively. This numerical result fully demonstrates that the computational ef-
ficiency of the TTGCN finite difference method is much higher than that of the
SCN finite difference method. Also, according to the numerical results in Table
Bl the order of convergence of the two methods in space = 2. Therefore, the nu-
merical results are consistent with the theoretical analysis. In addition, we also
compared with the method in [25]. It is obvious from Table [f] that the TTGCN
finite difference method has higher accuracy and convergence order.

When h = 1/100 and k = 4, Fig. 3 compares the CPU time of the two-
grid finite difference method and the standard finite difference method for the
time direction, which intuitively demonstrates the effectiveness of our method.
Besides, Fig. 4 shows intuitively temporal second-order convergence of two-grid
finite difference method.

Ezxzample 8 we consider

w — Au— I Au= -, (z,9,t) € 2 x (0,7,
u(m,y,t) = 07 (‘T7y) S aQ? te [07T]7
u(z,y,0) =zy(l —2)(1-y),  (z,y) € 2

In this example, since the exact solution is unknown, we assume that the numer-
ical solution with fixed spatial step h = 1/32 and half of the original time steps
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Table 4 The L2-errors, convergence rates and CPU time (seconds) with h = 1/100 and k = 4
for Example

@ Tc TF Errcen  ratebroon  CPU(s) Escon rateb .y CPU(s)
1/2 1/8 2.9535e-2 * 34.31 2.9535e-2 * 64.26
1/4 1/16  1.0043e-2 1.5563 71.10 1.0043e-2 1.5563 125.59
0.25 1/8 1/32  3.0208e-3 1.7331 161.96 3.0208e-3 1.7331 264.99
1/16  1/64  7.9828e-4 1.9200 412.81 7.9828e-4 1.9200 561.79
1/2 1/8 1.5532e-2 * 32.46 1.5532e-2 * 58.22
1/4 1/16  4.2840e-3 1.8582 69.57 4.2840e-3 1.8582 120.92
0.5 1/8 1/32 1.0448e-3 2.0357 156.46 1.0448e-3 2.0357 242.71
1/16 1/64 2.2614e-4 2.2080 391.87 2.2614e-4 2.2080 561.08
1/2 1/8 7.7945e-3 * 30.86 7.7946e-3 * 59.13
1/4 1/16 1.7861e-3 2.1256 67.44 1.7861e-3 2.1256 113.23
0.75 1/8 1/32  3.6423e-4 2.2939 156.47 3.6423e-4 2.2939 233.35
1/16 1/64  6.6431e-5 2.4549 402.73 6.6431e-5 2.4549 545.91

Table 5 The L2-errors and convergence rates with 7o = 1/128 and 7¢ = 1/512 for Example

h a=02 a=0.38
Errcen  rateiraon EscnN rated oy Errgen  ratelrgon Escn rate oy
1/2 1.8132¢-1 * 1.8132¢-1 * 1.1940e-1 * 1.1941e-1 *
1/4 4.3294e-2 2.0663 4.3296e-2 2.0663 2.8125e-2 2.0859 2.8133e-2 2.0856
1/8 1.0650e-2 2.0233 1.0652¢-2 2.0231 6.9065¢-3 2.0259 6.9139¢-2 2.0247
1/16  2.6486e-3 2.0070 2.6519¢-3 2.0060 1.7133e-3 2.0112 1.7206e-3 2.0066
1/32  6.5992e-4 2.0054 6.6217e-4 2.0017 4.2551e-4 2.0095 4.2932e-4 2.0028
600 T T
-+ 0=0.25 (TGD) g
a=0.75 (TGD) s
500 - |~ =~ -a=0.25 (GFD) . 1
—¥— a=0.75 (GFD)
400 | A
o .
£
= 300 ]
=)
o
(@)
200 - 7
100 7
0 . . . . .
0 10 20 30 50 60 70

Fig. 3 The CPU time for Example @] with h = 1/100 and k = 4.
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a=0.25
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—©—a=0.75

1/64

1/32

1/16

e

1/8

Fig. 4 The time convergence order for Example Plwith A = 1/100 and k = 4.

Table 6 The comparison between the scheme (39)-(313]) and the scheme [25] whit A = 1/100
and k = 4 for Example

Scheme (3.9)-(B13) Scheme in [25]
« o TF E tel E rate’
TTGCN  T@eppgon
12 1/8 2.9535¢-2 * 3.9266e-3 *
1/4 1/16 1.0043e-2 1.5563 1.9639e-3  0.9996
0.25 1/8 1/32 3.0208e-3 1.7331 9.7001e-4  1.0176
1/16  1/64 7.9828e-4 1.9200 4.6979e-4  1.0460
12 1/8 1.5532¢-2 * 7.6809¢-3 *
1/4 1/16 4.2840e-3 1.8582 3.8683e-3  0.9896
0.5 1/8 1/32 1.0448e-3 2.0357 1.9311e-3  1.0023
1/16  1/64 2.2614e-4 2.2080 9.5444e-4  1.0167
1/2 1/8 7.7945e-3 * 9.7620e-3 *
1/4 1/16 1.7861e-3 2.1256 4.9287e-3  0.9860
0.75 1/8 1/32 3.6423e-4 2.2939 2.2683e-3  0.9977
1/16  1/64 6.6431e-5 2.4549 1.2266e-3  1.0088

7c and TF is the “exact” solution. From Table [[, we can see that for the time
direction convergence order TTGCN and SCN finite difference methods in both
can approach 2, which agrees with the theoretical analysis.
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Table 7 The L2-errors and convergence rates with h = 1/32 and k = 4 for Example [3]

« TC TR Errcgon rate%“TGCN Escn Ta‘tetSCN

1/12  1/48  6.0750e-7 * 6.0563¢-7 *

1/24  1/96  1.8258e-7 1.7344 1.8214e-7  1.7334
0.25 1748 1/192  4.9624¢-8 1.8794 4.9558¢-8  1.8779

1/96  1/384  1.2745¢-8 1.9611 1.2739¢-8  1.9599

1/12 1/48 1.2281e-6 * 1.2246e-6 *

1/24 1/96 3.6180e-7 1.7661 3.6036e-7 1.7648
0.5 1/48 1/192  9.7691e-8 1.8860 9.7595e-8 1.8846

1/96 1/384  2.5272e-8 1.9507 2.5363e-8 1.9498

1/12  1/48  2.1532c-6 * 2.1477e-6 *

1/24  1/96  6.3459¢-7 1.7626 6.3351e-7  1.7614
0.75 1748 1/192  1.7308e-7 1.8744 1.7294e-7  1.8731

1/96  1/384  4.5190e-8 1.9373 4.5177e-8  1.9366
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