Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130798
Title: | A Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problems |
Authors: | Derakhshan, M. Hendy, A. S. Lopes, A. M. Galhano, A. Zaky, M. A. |
Issue Date: | 2023 |
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) |
Citation: | Derakhshan, M, Hendy, AS, Lopes, AM, Galhano, A & Zaky, MA 2023, 'A Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problems', Fractal and Fractional, Том. 7, № 9, 649. https://doi.org/10.3390/fractalfract7090649 Derakhshan, M., Hendy, A. S., Lopes, A. M., Galhano, A., & Zaky, M. A. (2023). A Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problems. Fractal and Fractional, 7(9), [649]. https://doi.org/10.3390/fractalfract7090649 |
Abstract: | Invoking the matrix transfer technique, we propose a novel numerical scheme to solve the time-fractional advection–dispersion equation (ADE) with distributed-order Riesz-space fractional derivatives (FDs). The method adopts the midpoint rule to reformulate the distributed-order Riesz-space FDs by means of a second-order linear combination of Riesz-space FDs. Then, a central difference approximation is used side by side with the matrix transform technique for approximating the Riesz-space FDs. Based on this, the distributed-order time-fractional ADE is transformed into a time-fractional ordinary differential equation in the Caputo sense, which has an equivalent Volterra integral form. The Simpson method is used to discretize the weakly singular kernel of the resulting Volterra integral equation. Stability, convergence, and error analysis are presented. Finally, simulations are performed to substantiate the theoretical findings. © 2023 by the authors. |
Keywords: | ADVECTION–DISPERSION EQUATION CONVERGENCE ANALYSIS DISTRIBUTED-ORDER MATRIX TRANSFORM METHOD RIESZ FRACTIONAL DERIVATIVE |
URI: | http://elar.urfu.ru/handle/10995/130798 |
Access: | info:eu-repo/semantics/openAccess cc-by |
License text: | https://creativecommons.org/licenses/by/4.0/ |
SCOPUS ID: | 85172199007 |
WOS ID: | 001071748600001 |
PURE ID: | 45997230 |
ISSN: | 2504-3110 |
DOI: | 10.3390/fractalfract7090649 |
Sponsorship: | Al-Imam Muhammad Ibn Saud Islamic University, IMSIU; Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University: IMSIU-RP23095 The authors gratefully acknowledge the technical and financial support provided by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU). This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23095). |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85172199007.pdf | 2,02 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License