Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130798
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDerakhshan, M.en
dc.contributor.authorHendy, A. S.en
dc.contributor.authorLopes, A. M.en
dc.contributor.authorGalhano, A.en
dc.contributor.authorZaky, M. A.en
dc.date.accessioned2024-04-05T16:32:59Z-
dc.date.available2024-04-05T16:32:59Z-
dc.date.issued2023-
dc.identifier.citationDerakhshan, M, Hendy, AS, Lopes, AM, Galhano, A & Zaky, MA 2023, 'A Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problems', Fractal and Fractional, Том. 7, № 9, 649. https://doi.org/10.3390/fractalfract7090649harvard_pure
dc.identifier.citationDerakhshan, M., Hendy, A. S., Lopes, A. M., Galhano, A., & Zaky, M. A. (2023). A Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problems. Fractal and Fractional, 7(9), [649]. https://doi.org/10.3390/fractalfract7090649apa_pure
dc.identifier.issn2504-3110-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85172199007&doi=10.3390%2ffractalfract7090649&partnerID=40&md5=338b1e7e2061b07a31bc2da5b3d90e061
dc.identifier.otherhttps://www.mdpi.com/2504-3110/7/9/649/pdf?version=1692966813pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130798-
dc.description.abstractInvoking the matrix transfer technique, we propose a novel numerical scheme to solve the time-fractional advection–dispersion equation (ADE) with distributed-order Riesz-space fractional derivatives (FDs). The method adopts the midpoint rule to reformulate the distributed-order Riesz-space FDs by means of a second-order linear combination of Riesz-space FDs. Then, a central difference approximation is used side by side with the matrix transform technique for approximating the Riesz-space FDs. Based on this, the distributed-order time-fractional ADE is transformed into a time-fractional ordinary differential equation in the Caputo sense, which has an equivalent Volterra integral form. The Simpson method is used to discretize the weakly singular kernel of the resulting Volterra integral equation. Stability, convergence, and error analysis are presented. Finally, simulations are performed to substantiate the theoretical findings. © 2023 by the authors.en
dc.description.sponsorshipAl-Imam Muhammad Ibn Saud Islamic University, IMSIU; Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University: IMSIU-RP23095en
dc.description.sponsorshipThe authors gratefully acknowledge the technical and financial support provided by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU).en
dc.description.sponsorshipThis work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23095).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceFractal and Fractional2
dc.sourceFractal and Fractionalen
dc.subjectADVECTION–DISPERSION EQUATIONen
dc.subjectCONVERGENCE ANALYSISen
dc.subjectDISTRIBUTED-ORDERen
dc.subjectMATRIX TRANSFORM METHODen
dc.subjectRIESZ FRACTIONAL DERIVATIVEen
dc.titleA Matrix Transform Technique for Distributed-Order Time-Fractional Advection–Dispersion Problemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/fractalfract7090649-
dc.identifier.scopus85172199007-
local.contributor.employeeDerakhshan, M., Department of Industrial Engineering, Apadana Institute of Higher Education, Shiraz, 7187985443, Iran, Faculty of Technology and Engineering, Zand Institute of Higher Education, Shiraz, 8415683111, Iranen
local.contributor.employeeHendy, A.S., Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.employeeLopes, A.M., LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugalen
local.contributor.employeeGalhano, A., Faculdade de Ciências Naturais, Engenharias e Tecnologias, Universidade Lusófona do Porto, Rua de Augusto Rosa 24, Porto, 4000-098, Portugalen
local.contributor.employeeZaky, M.A., Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabiaen
local.issue9-
local.volume7-
dc.identifier.wos001071748600001-
local.contributor.departmentDepartment of Industrial Engineering, Apadana Institute of Higher Education, Shiraz, 7187985443, Iranen
local.contributor.departmentFaculty of Technology and Engineering, Zand Institute of Higher Education, Shiraz, 8415683111, Iranen
local.contributor.departmentComputational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.departmentLAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugalen
local.contributor.departmentFaculdade de Ciências Naturais, Engenharias e Tecnologias, Universidade Lusófona do Porto, Rua de Augusto Rosa 24, Porto, 4000-098, Portugalen
local.contributor.departmentDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabiaen
local.identifier.pure45997230-
local.description.order649-
local.identifier.eid2-s2.0-85172199007-
local.identifier.wosWOS:001071748600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85172199007.pdf2,02 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons