Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/117833
Title: Phase Portraits of Stabilized Hamiltonian Systems in Growth Models
Authors: Alexander, T. M.
Anastasiia, U. A.
Alexandr, T. A.
Issue Date: 2022
Publisher: American Institute of Physics Inc.
Citation: Alexander T. M. Phase Portraits of Stabilized Hamiltonian Systems in Growth Models / T. M. Alexander, U. A. Anastasiia, T. A. Alexandr // AIP Conference Proceedings. — 2022. — Vol. 2425. — 110011.
Abstract: The paper investigates a qualitative behavior of solutions of Hamiltonian systems generated by the Pontryagin maximum principle for the optimal control problems at the infinite time horizon. Based on the stabilization procedure, authors show that the only possible portraits are stable focus or saddle. As an example, the resource consumption model is considered. By varying the discount factor in the model, authors demonstrate phase portraits in the corresponding optimal control problem. © 2022 American Institute of Physics Inc.. All rights reserved.
Keywords: GROWTH MODELS
HAMILTONIAN SYSTEMS
OPTIMAL CONTROL PROBLEMS
PONTRYAGIN MAXIMUM PRINCIPLE
URI: http://elar.urfu.ru/handle/10995/117833
Access: info:eu-repo/semantics/openAccess
Conference name: International Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020
Conference date: 17 September 2020 through 23 September 2020
SCOPUS ID: 85128514468
PURE ID: 30107000
ISSN: 0094243X
ISBN: 9780735441828
DOI: 10.1063/5.0081701
Sponsorship: Simos T.E.Simos T.E.Simos T.E.Simos T.E.Tsitouras C.
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85128514468.pdf767,33 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.