Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117833
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexander, T. M.en
dc.contributor.authorAnastasiia, U. A.en
dc.contributor.authorAlexandr, T. A.en
dc.date.accessioned2022-10-19T05:19:46Z-
dc.date.available2022-10-19T05:19:46Z-
dc.date.issued2022-
dc.identifier.citationAlexander T. M. Phase Portraits of Stabilized Hamiltonian Systems in Growth Models / T. M. Alexander, U. A. Anastasiia, T. A. Alexandr // AIP Conference Proceedings. — 2022. — Vol. 2425. — 110011.en
dc.identifier.isbn9780735441828-
dc.identifier.issn0094243X-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128514468&doi=10.1063%2f5.0081701&partnerID=40&md5=77d449b225af33182974a6757520e444link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117833-
dc.description.abstractThe paper investigates a qualitative behavior of solutions of Hamiltonian systems generated by the Pontryagin maximum principle for the optimal control problems at the infinite time horizon. Based on the stabilization procedure, authors show that the only possible portraits are stable focus or saddle. As an example, the resource consumption model is considered. By varying the discount factor in the model, authors demonstrate phase portraits in the corresponding optimal control problem. © 2022 American Institute of Physics Inc.. All rights reserved.en
dc.description.sponsorshipSimos T.E.Simos T.E.Simos T.E.Simos T.E.Tsitouras C.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conference Proceedingsen
dc.subjectGROWTH MODELSen
dc.subjectHAMILTONIAN SYSTEMSen
dc.subjectOPTIMAL CONTROL PROBLEMSen
dc.subjectPONTRYAGIN MAXIMUM PRINCIPLEen
dc.titlePhase Portraits of Stabilized Hamiltonian Systems in Growth Modelsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.nameInternational Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020en
dc.conference.date17 September 2020 through 23 September 2020-
dc.identifier.doi10.1063/5.0081701-
dc.identifier.scopus85128514468-
local.contributor.employeeAlexander, T.M., Krasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federationen
local.contributor.employeeAnastasiia, U.A., Krasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federationen
local.contributor.employeeAlexandr, T.A., Ural Federal University, 620002, Mira Street, 19, Yekaterinburg, Russian Federationen
local.volume2425-
local.contributor.departmentKrasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federationen
local.contributor.departmentUral Federal University, 620002, Mira Street, 19, Yekaterinburg, Russian Federationen
local.identifier.pure30107000-
local.description.order110011-
local.identifier.eid2-s2.0-85128514468-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85128514468.pdf767,33 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.