Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/117833
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Alexander, T. M. | en |
dc.contributor.author | Anastasiia, U. A. | en |
dc.contributor.author | Alexandr, T. A. | en |
dc.date.accessioned | 2022-10-19T05:19:46Z | - |
dc.date.available | 2022-10-19T05:19:46Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Alexander T. M. Phase Portraits of Stabilized Hamiltonian Systems in Growth Models / T. M. Alexander, U. A. Anastasiia, T. A. Alexandr // AIP Conference Proceedings. — 2022. — Vol. 2425. — 110011. | en |
dc.identifier.isbn | 9780735441828 | - |
dc.identifier.issn | 0094243X | - |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128514468&doi=10.1063%2f5.0081701&partnerID=40&md5=77d449b225af33182974a6757520e444 | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/117833 | - |
dc.description.abstract | The paper investigates a qualitative behavior of solutions of Hamiltonian systems generated by the Pontryagin maximum principle for the optimal control problems at the infinite time horizon. Based on the stabilization procedure, authors show that the only possible portraits are stable focus or saddle. As an example, the resource consumption model is considered. By varying the discount factor in the model, authors demonstrate phase portraits in the corresponding optimal control problem. © 2022 American Institute of Physics Inc.. All rights reserved. | en |
dc.description.sponsorship | Simos T.E.Simos T.E.Simos T.E.Simos T.E.Tsitouras C. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | AIP Conference Proceedings | en |
dc.subject | GROWTH MODELS | en |
dc.subject | HAMILTONIAN SYSTEMS | en |
dc.subject | OPTIMAL CONTROL PROBLEMS | en |
dc.subject | PONTRYAGIN MAXIMUM PRINCIPLE | en |
dc.title | Phase Portraits of Stabilized Hamiltonian Systems in Growth Models | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | International Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020 | en |
dc.conference.date | 17 September 2020 through 23 September 2020 | - |
dc.identifier.doi | 10.1063/5.0081701 | - |
dc.identifier.scopus | 85128514468 | - |
local.contributor.employee | Alexander, T.M., Krasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Anastasiia, U.A., Krasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Alexandr, T.A., Ural Federal University, 620002, Mira Street, 19, Yekaterinburg, Russian Federation | en |
local.volume | 2425 | - |
local.contributor.department | Krasovskü Institute of mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 620990, 16 S. Kovalevskaya street, Yekaterinburg, Russian Federation | en |
local.contributor.department | Ural Federal University, 620002, Mira Street, 19, Yekaterinburg, Russian Federation | en |
local.identifier.pure | 30107000 | - |
local.description.order | 110011 | - |
local.identifier.eid | 2-s2.0-85128514468 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85128514468.pdf | 767,33 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.