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Abstract. The paper investigates a qualitative behavior of solutions of Hamiltonian systems generated by the Pontryagin
maximum principle for the optimal control problems at the infinite time horizon. Based on the stabilization procedure,
authors show that the only possible portraits are stable focus or saddle. As an example, the resource consumption model is
considered. By varying the discount factor in the model, authors demonstrate phase portraits in the corresponding optimal
control problem.
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INTRODUCTION

The paper analyzes a qualitative behavior of the Hamiltonian systems arising in the Pontryagin maximum principle
used for an optimal control problem at the infinite time interval. Many applied areas such as financial, demographic,
economic, ecological etc., face with this type of problems. Stabilizability property of the Hamiltonian systems
becomes very important sine it allows for constructing sub-optimal (stabilized) solutions of an optimal control problem
and provide a good approximation of an optimal trajectories. As a result, these approximate solutions one can use for
restoring the optimal strategies, at least for the problems of small dimensions (see [1, 6, 7]).

In [7], authors established conditions for the existence of the nonlinear stabilizer. This paper demonstrates possible
phase portraits of the Hamiltonian systems based on the analysis of the steady state’s character. The paper is organized
as follows. Next section poses the problem, then we construct the Hamiltonian function and discuss its properties. The
third section analyzes the corresponding Hamiltonian system and its Jacobian. Using properties of the Jacobi matrix,
we investigate characters of a steady state. As an example, we refer on the previous work and consider the particular
problem, for which we show that under different values of the model parameters, optimal solutions behave only in
two possible ways depending on steady state character.

CONTROL PROBLEM

Many optimal control problems based on the growth models that describe development of the processes in many
applied areas deal with the following dynamics

X(1) = F(x(@)u(r) + G(x(1)) = P(x(2),u(2), x(0)=1x,, (1
where x€R” is the vector of investigated factors, the functional matrix F(x)={f;(x)}"";=;, and the vector—function
G(x)={gi(x)}"=; are twice continuously differentiable functions. The symbol u=(u,, ..., u,) stands for the control

parameter. The quality of the control process is estimated by the functional of the form
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JO = 0“” e Ine(x(t),u(t))dt » )
where c(x, u) is approximated by the equality
()= [T A~u, ()= w,(x()) f (x(1)) 3)
Functions fix) and wi(x) (i = I, ..., m) axllre1 supposed to be twice continuously differentiable. In the economic growth
models, function f{x) is called production function. In (3), each multiplier is strictly positive. This restriction is not
critical, because otherwise, one can introduce an additional parameter d (x) = f (x)z :":1 k;(x) determining the debt,
i.e. it simply means that the economy spend more goods than produces. In this case, the right-hand part is changed as
follows ¢(r) = [T, (1= u,(5) = w,(x(1)) + k, (x(e) f (x(1))..
The structure of the quality function (2) imposes an additional constraint on the controls u; in (3), i.e.
0<Y " u(x)<1=3ir, e (0,1):u,(1) €[0,i5,], i =1,2,..,m. 4)
In the growth models, these restrictions follow from the assumption on closedness of the designed system. Based
on the introduced dynamics (1) and the quality functional (2), one can formulate the following control problem.
Problem. The problem is to construct such a control process (x(¢), u(f)) that maximizes the quality functional (2)

along trajectories of the system (1) under the control restriction (4). The problem analysis is provided within the
Pontryagin maximum principle for the control problems with infinite time interval (see [4], [1]).

CONTROL PROBLEM ANALYSIS

For Problem, the stationary Hamiltonian function that is independent explicitly on time has the following form
H()=Y" In(l—u,—w,(x))+In f(x)+p O (x,u), (%)
where w€R" is a vector of adjoint parameters. The Hamiltonian function is strictly concave with respect to the

control parameters u (see [7]). Therefore, one can guarantee existence of such controls u that satisfy constraints (4)
and provide maximum to the Hamiltonian function (5).

0, () €A, ={(ep)ow, () + T, (ep) 2 1, T, 0op) = (7 F ()
w,(xp)=11-w, =T (xy), (xp) e ={(xy):l-u(x)<w,(x)+T,(x.p) <1} ©)
i, () e A ={(xy):w () +T () <1-ir |, jeil,...m}

The derived structure of the control vector u=u(x, y) allows for splitting up the 2n-dimensional space of phase x
and conjugate y variables in 3" domains with different control regimes. The maximized Hamiltonian function
constructed by the rule:

H(x,y)=H(x,p,u), ™)
is continuous and smooth in variables x and y in all domains A’; (j € {1,,,,, m} k€ {1, 2,3}) .

Once the Hamiltonian function is derived, we generate the Hamiltonian system according the formulae:

- OH(x) _
w0="2 0=y &
(1) =py —%, lim ¢ (x(0) () =0

Assumption. Let the Hamiltonian system (8) have a unique steady state P*=(x", ") with the strictly positive phase
components X€R” - and non-zero conjugate elements y;"#0, i€{1,...,n}. Using Assumption, the system (8) is
linearized at the vicinity O;" of the steady state P*, and we derive the following linear system:

¥=A%+By, () =x(t)-x" )
v =Ci+(pE, 4"}, y(O) =y () -y'
where matrices 4, B, and C are Jacobian blocks calculated as follows:
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Next section studies the eigenvalues of the Jacobian (10).

(10)

EIGENVALUES OF THE JACOBIAN

Eigenvalues of a Jacobian determine qualitative behavior of the system (8) around the steady state P*. It plays
significant role for stabilization problem. Here, we show that the eigenvalues of the Jacobian (10) can be real or
complex conjugate, and exactly n roots of the characteristics polynomial have positive real parts, while » other roots
have negative real parts. Based on the results derived by Yu.S. Ledyaev in [2], the stabilization problem of the
linearized system (9) requires for constructing a such matrix X that linearly connects phase variables and conjugate
components 17 = X3 at the vicinity Os" of the steady state P* and asymptotically stabilizes the following system:

X=(A4+BX)X, 7 =Xx%. (11)
Consider an auxiliary linear system:

sy P _ Pl
E=(4 2E,7)§+BZ, & =xe . (12)

z :C§—(AT —§E”jz, z=1e "
and suppose that eigenvalues of the Jacobi matrix M of the system (12) does not have pure imaginary eigenvalues:

4-LE B a3
Re(A(M))#0, where M =

C LE, A
2

Remark. Matrix M is the Hamiltonian matrix (see [3, 7]). Therefore, its eigenvalues are symmetric with respect
to the imaginary axes. In [7], authors prove that the Jacobian J* and matrix M are related by the equality.

J =M +§E (14)

The following theorem establishes the existence of the matrix X (see [11]).
Lemma 1. Matrix X stabilizing dynamics (12) does exist and can be found as a solution of the following matrix
Riccati equation if the condition (13) holds.

C—X(A—gEn)+(§En—ATJX—XB)(:o- (15)

Lemma 2. Matrix X constructed in Lemma 1 stabilizes the original linearized system (9) in the stable subspace €,
where 7 = X% .

Lemma 2 shows that the Hamiltonian system is asymptotically stable by the first approximation around the steady
state in the linear subspace Q. In other words, the stabilized dynamics, derived by substituting y =" + X (x — x")
into the first » equations of Hamiltonian system (8), provides asymptotically stable system of the form:

oH
ity = 2 EV)
oy

Around the steady state, the stabilized Hamiltonian system has stable focal or stable node character.

Remark. In the paper [9], for the resource productivity optimization problem, the phase portrait of the stabilized
solution demonstrates the cyclic behavior (see Fig. 1, left). Another example can be found in [10], where for other

values of the model parameters the model, mentioned in the paper [9], behaves in a different way and stabilizes at the
steady state of the node type (see Fig. 1, right).

(16)

y=p +X (x-x")

110011-3



215

40 195

FIGURE 1. The stable focal behavior (left), the stable node behavior (right).

CONCLUSIONS

The paper discusses phase portraits of the stabilized Hamiltonian dynamics in the optimal control problems arising

in growth models of different applied areas. It is shown that the existence of a steady state guarantees the stabilizability
of the Hamiltonian dynamics at least locally in a vicinity of the equilibrium. This fact plays an important role for
numerical algorithms synthesizing optimal solutions of the control problems.
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