Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90727
Название: | Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation |
Авторы: | Burmasheva, N. V. Prosviryakov, E. Yu. |
Дата публикации: | 2019 |
Издатель: | Samara State Technical University |
Библиографическое описание: | Burmasheva, N. V. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation / N. V. Burmasheva, E. Yu. Prosviryakov. — DOI 10.14498/vsgtu1670 // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki. — 2019. — Vol. 2. — Iss. 23. — P. 341-360. |
Аннотация: | This article discusses the solvability of an overdetermined system of heat convection equations in the Boussinesq approximation. The Oberbeck-Boussinesq system of equations, supplemented by an incompressibility equation, is overdetermined. The number of equations exceeds the number of unknown functions, since non-uniform layered flows of a viscous incompressible fluid are studied (one of the components of the velocity vector is identically zero). The solvability of the non-linear system of Oberbeck-Boussinesq equations is investigated. The solvability of the overdetermined system of non-linear Oberbeck-Boussinesq equations in partial derivatives is studied by constructing several particular exact solutions. A new class of exact solutions for describing three-dimensional non-linear layered flows of a vertical swirling viscous incompressible fluid is presented. The vertical component of vorticity in a non-rotating fluid is generated by a non-uniform velocity field at the lower boundary of an infinite horizontal fluid layer. Convection in a viscous incompressible fluid is induced by linear heat sources. The main attention is paid to the study of the properties of the flow velocity field. The dependence of the structure of this field on the magnitude of vertical twist is investigated. It is shown that, with nonzero vertical twist, one of the components of the velocity vector allows stratification into five zones through the thickness of the layer under study (four stagnant points). The analysis of the velocity field has shown that the kinetic energy of the fluid can twice take the zero value through the layer thickness. © 2019 Samara State Technical University. All rights reserved. |
Ключевые слова: | COUNTERFLOW EXACT SOLUTION LAYERED CONVECTION OBERBECK-BOUSSINESQ EQUATION SYSTEM STAGNATION POINT STRATIFICATION TANGENTIAL STRESS VERTICAL TWIST |
URI: | http://elar.urfu.ru/handle/10995/90727 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Идентификатор РИНЦ: | 41271058 |
Идентификатор SCOPUS: | 85072016556 |
Идентификатор WOS: | 000477832300008 |
Идентификатор PURE: | 10769002 |
ISSN: | 1991-8615 |
DOI: | 10.14498/vsgtu1670 |
Сведения о поддержке: | 12281GU/2017 Competing interests. We declare that we have no conflicts of interest in the authorship or publication of this contribution. Authors’ contributions and responsibilities. We are fully responsible for submitting the final manuscript in print. Each of us has approved the final version of the manuscript. Funding. This work was supported by the Foundation for Assistance to Small Innovative Enterprises in Science and Technology (the UMNIK program, agreement 12281GU/2017). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.14498-vsgtu1670.pdf | 1,11 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.