Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90727
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBurmasheva, N. V.en
dc.contributor.authorProsviryakov, E. Yu.en
dc.date.accessioned2020-09-29T09:48:32Z-
dc.date.available2020-09-29T09:48:32Z-
dc.date.issued2019-
dc.identifier.citationBurmasheva, N. V. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation / N. V. Burmasheva, E. Yu. Prosviryakov. — DOI 10.14498/vsgtu1670 // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki. — 2019. — Vol. 2. — Iss. 23. — P. 341-360.en
dc.identifier.issn1991-8615-
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=vsgtu&paperid=1670&what=fullt&option_lang=ruspdf
dc.identifier.other1good_DOI
dc.identifier.other0cc7d726-13b2-498d-845c-a8722abfe94dpure_uuid
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=85072016556m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90727-
dc.description.abstractThis article discusses the solvability of an overdetermined system of heat convection equations in the Boussinesq approximation. The Oberbeck-Boussinesq system of equations, supplemented by an incompressibility equation, is overdetermined. The number of equations exceeds the number of unknown functions, since non-uniform layered flows of a viscous incompressible fluid are studied (one of the components of the velocity vector is identically zero). The solvability of the non-linear system of Oberbeck-Boussinesq equations is investigated. The solvability of the overdetermined system of non-linear Oberbeck-Boussinesq equations in partial derivatives is studied by constructing several particular exact solutions. A new class of exact solutions for describing three-dimensional non-linear layered flows of a vertical swirling viscous incompressible fluid is presented. The vertical component of vorticity in a non-rotating fluid is generated by a non-uniform velocity field at the lower boundary of an infinite horizontal fluid layer. Convection in a viscous incompressible fluid is induced by linear heat sources. The main attention is paid to the study of the properties of the flow velocity field. The dependence of the structure of this field on the magnitude of vertical twist is investigated. It is shown that, with nonzero vertical twist, one of the components of the velocity vector allows stratification into five zones through the thickness of the layer under study (four stagnant points). The analysis of the velocity field has shown that the kinetic energy of the fluid can twice take the zero value through the layer thickness. © 2019 Samara State Technical University. All rights reserved.en
dc.description.sponsorship12281GU/2017en
dc.description.sponsorshipCompeting interests. We declare that we have no conflicts of interest in the authorship or publication of this contribution. Authors’ contributions and responsibilities. We are fully responsible for submitting the final manuscript in print. Each of us has approved the final version of the manuscript. Funding. This work was supported by the Foundation for Assistance to Small Innovative Enterprises in Science and Technology (the UMNIK program, agreement 12281GU/2017).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSamara State Technical Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceVestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Naukien
dc.subjectCOUNTERFLOWen
dc.subjectEXACT SOLUTIONen
dc.subjectLAYERED CONVECTIONen
dc.subjectOBERBECK-BOUSSINESQ EQUATION SYSTEMen
dc.subjectSTAGNATION POINTen
dc.subjectSTRATIFICATIONen
dc.subjectTANGENTIAL STRESSen
dc.subjectVERTICAL TWISTen
dc.titleConvective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi41271058-
dc.identifier.doi10.14498/vsgtu1670-
dc.identifier.scopus85072016556-
local.affiliationUrals Branch, Institute of Engineering Science, Russian Academy of Sciences, 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federationen
local.affiliationUral Federal University Named after First President of Russia B. N. Yeltsin, 19, Mira st., Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeBurmasheva, N.V., Urals Branch, Institute of Engineering Science, Russian Academy of Sciences, 34, Komsomolskaya st., Ekaterinburg, 620049, Russian Federationru
local.contributor.employeeProsviryakov, E.Yu., Ural Federal University Named after First President of Russia B. N. Yeltsin, 19, Mira st., Ekaterinburg, 620002, Russian Federationru
local.description.firstpage341-
local.description.lastpage360-
local.issue23-
local.volume2-
dc.identifier.wos000477832300008-
local.identifier.pure10769002-
local.identifier.eid2-s2.0-85072016556-
local.identifier.wosWOS:000477832300008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.14498-vsgtu1670.pdf1,11 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.