Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/90709
Title: Approximation of functions by n-separate wavelets in the spaces Lp(R), 1 ≤ p ≤ ∞
Authors: Pleshcheva, E. A.
Issue Date: 2019
Publisher: Krasovskii Institute of Mathematics and Mechanics
Citation: Pleshcheva, E. A. Approximation of functions by n-separate wavelets in the spaces Lp(R), 1 ≤ p ≤ ∞ / E. A. Pleshcheva. — DOI 10.21538/0134-4889-2019-25-2-167-176 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 2. — Iss. 25. — P. 167-176.
Abstract: We consider the orthonormal bases of n-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space L2(R) is formed by shifts and compressions of a single function ψ. In contrast to the classical case, we consider a basis of L2(R) formed by shifts and compressions of n functions ψs, s = 1, . , n. The constructed n-separate wavelets form an orthonormal basis of L2(R). In this case, the series Σn s=1Σj∈ZΣk∈Zhf, ψs nj+siψs nj+s converges to the function f in the space L2(R). We write additional constraints on the functions φs and ψs, s = 1, . , n, that provide the convergence of the series to the function f in the spaces Lp(R), 1 ≤ p ≤ ∞, in the norm and almost everywhere. © 2019 Trudy Instituta Matematiki i Mekhaniki UrO RAN. All rights reserved.
Keywords: BASIS
MULTIRESOLUTION ANALYSIS
SCALING FUNCTION
WAVELET
URI: http://elar.urfu.ru/handle/10995/90709
Access: info:eu-repo/semantics/openAccess
RSCI ID: 38071612
SCOPUS ID: 85078418742
WOS ID: 000485177500015
PURE ID: 10045798
ISSN: 0134-4889
DOI: 10.21538/0134-4889-2019-25-2-167-176
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.21538-0134-4889-2019-25-2-167-176.pdf198,73 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.