Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/90709
Название: | Approximation of functions by n-separate wavelets in the spaces Lp(R), 1 ≤ p ≤ ∞ |
Авторы: | Pleshcheva, E. A. |
Дата публикации: | 2019 |
Издатель: | Krasovskii Institute of Mathematics and Mechanics |
Библиографическое описание: | Pleshcheva, E. A. Approximation of functions by n-separate wavelets in the spaces Lp(R), 1 ≤ p ≤ ∞ / E. A. Pleshcheva. — DOI 10.21538/0134-4889-2019-25-2-167-176 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 2. — Iss. 25. — P. 167-176. |
Аннотация: | We consider the orthonormal bases of n-separate MRAs and wavelets constructed by the author earlier. The classical wavelet basis of the space L2(R) is formed by shifts and compressions of a single function ψ. In contrast to the classical case, we consider a basis of L2(R) formed by shifts and compressions of n functions ψs, s = 1, . , n. The constructed n-separate wavelets form an orthonormal basis of L2(R). In this case, the series Σn s=1Σj∈ZΣk∈Zhf, ψs nj+siψs nj+s converges to the function f in the space L2(R). We write additional constraints on the functions φs and ψs, s = 1, . , n, that provide the convergence of the series to the function f in the spaces Lp(R), 1 ≤ p ≤ ∞, in the norm and almost everywhere. © 2019 Trudy Instituta Matematiki i Mekhaniki UrO RAN. All rights reserved. |
Ключевые слова: | BASIS MULTIRESOLUTION ANALYSIS SCALING FUNCTION WAVELET |
URI: | http://elar.urfu.ru/handle/10995/90709 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 38071612 |
Идентификатор SCOPUS: | 85078418742 |
Идентификатор WOS: | 000485177500015 |
Идентификатор PURE: | 10045798 |
ISSN: | 0134-4889 |
DOI: | 10.21538/0134-4889-2019-25-2-167-176 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.21538-0134-4889-2019-25-2-167-176.pdf | 198,73 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.