Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/90053
Title: | Thermal acclimation and seasonal acclimatization: A comparative study of cardiac response to prolonged temperature change in shorthorn sculpin |
Authors: | Filatova, T. S. Abramochkin, D. V. Shiels, H. A. |
Issue Date: | 2019 |
Publisher: | Company of Biologists Ltd |
Citation: | Filatova, T. S. Thermal acclimation and seasonal acclimatization: A comparative study of cardiac response to prolonged temperature change in shorthorn sculpin / T. S. Filatova, D. V. Abramochkin, H. A. Shiels. — DOI 10.1242/jeb.202242 // Journal of Experimental Biology. — 2019. — Vol. 16. — Iss. 222. — jeb202242. |
Abstract: | Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C (‘summer-acclimated’); (2) summer-caught fish kept at 3°C (‘cold acclimated’); and (3) fish caught in March (‘winter-acclimatized’). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (IKr and IK1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (ICa) was larger following winter acclimatization, but again, there was no effect of cold acclimation on ICa. Interestingly, the other depolarizing current, INa, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects. © 2019. Published by The Company of Biologists Ltd. |
Keywords: | ACTION POTENTIAL ELECTROPHYSIOLOGY HEART HYPERTROPHY MYOXOCEPHALUS SCORPIO THERMAL REMODELLING ACCLIMATIZATION ACTION POTENTIAL ANIMAL CARDIAC MUSCLE CELL FISH HEAT HEAT TOLERANCE PHYSIOLOGY SEASON ACCLIMATIZATION ACTION POTENTIALS ANIMALS FISHES HOT TEMPERATURE MYOCYTES, CARDIAC SEASONS THERMOTOLERANCE |
URI: | http://elar.urfu.ru/handle/10995/90053 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85071707207 |
WOS ID: | 000484368200004 |
PURE ID: | 10768470 |
ISSN: | 0022-0949 |
DOI: | 10.1242/jeb.202242 |
metadata.dc.description.sponsorship: | Russian Foundation for Basic Research, RFBR: 18-315-20049 The study was supported by the Russian Foundation for Basic Research (18-315-20049 to D.V.A.). |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1242-jeb.202242.pdf | 1,8 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.