Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/27403
Title: | Special Moduli of Continuity and the Constant in the Jackson-Stechkin Theorem |
Authors: | Babenko, A. G. Kryakin, Y. V. Staszak, P. T. |
Issue Date: | 2013 |
Citation: | Babenko A. G. Special Moduli of Continuity and the Constant in the Jackson-Stechkin Theorem / A. G. Babenko, Y. V. Kryakin, P. T. Staszak // Constructive Approximation. — 2013. — Vol. 38. — № 3. — P. 339-364. |
Abstract: | We consider a special 2k-order modulus of continuity W 2k(f,h) of 2π-periodic continuous functions and prove an analog of the Bernstein-Nikolsky-Stechkin inequality for trigonometric polynomials in terms of W 2k. We simplify the main construction from the paper by Foucart et al. (Constr. Approx. 29(2), 157-179, 2009) and give new upper estimates of the Jackson-Stechkin constants. The inequality W2k(f,h)≤3∥f∥∞ and the Bernstein-Nikolsky-Stechkin type estimate imply the Jackson-Stechkin theorem with nearly optimal constant for approximation by periodic splines. © 2013 The Author(s). |
Keywords: | EXACT CONSTANTS FAVARD ESTIMATES JACKSON-STECHKIN THEOREM RTH MODULUS OF SMOOTHNESS |
URI: | http://elar.urfu.ru/handle/10995/27403 |
SCOPUS ID: | 84886793037 |
WOS ID: | 000326347600001 |
PURE ID: | 841488 |
ISSN: | 0176-4276 |
DOI: | 10.1007/s00365-013-9210-6 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
scopus-2013-0557.pdf | 825,17 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.