Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/27403
Title: Special Moduli of Continuity and the Constant in the Jackson-Stechkin Theorem
Authors: Babenko, A. G.
Kryakin, Y. V.
Staszak, P. T.
Issue Date: 2013
Citation: Babenko A. G. Special Moduli of Continuity and the Constant in the Jackson-Stechkin Theorem / A. G. Babenko, Y. V. Kryakin, P. T. Staszak // Constructive Approximation. — 2013. — Vol. 38. — № 3. — P. 339-364.
Abstract: We consider a special 2k-order modulus of continuity W 2k(f,h) of 2π-periodic continuous functions and prove an analog of the Bernstein-Nikolsky-Stechkin inequality for trigonometric polynomials in terms of W 2k. We simplify the main construction from the paper by Foucart et al. (Constr. Approx. 29(2), 157-179, 2009) and give new upper estimates of the Jackson-Stechkin constants. The inequality W2k(f,h)≤3∥f∥∞ and the Bernstein-Nikolsky-Stechkin type estimate imply the Jackson-Stechkin theorem with nearly optimal constant for approximation by periodic splines. © 2013 The Author(s).
Keywords: EXACT CONSTANTS
FAVARD ESTIMATES
JACKSON-STECHKIN THEOREM
RTH MODULUS OF SMOOTHNESS
URI: http://elar.urfu.ru/handle/10995/27403
SCOPUS ID: 84886793037
WOS ID: 000326347600001
PURE ID: 841488
ISSN: 0176-4276
DOI: 10.1007/s00365-013-9210-6
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
scopus-2013-0557.pdf825,17 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.