Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141738
Название: Detection of Current Transformer Saturation Based on Machine Learning
Авторы: Odinaev, I.
Pazderin, A.
Safaraliev, M.
Kamalov, F.
Senyuk, M.
Gubin, P. Y.
Дата публикации: 2024
Издатель: Multidisciplinary Digital Publishing Institute (MDPI)
Библиографическое описание: Odinaev, I., Pazderin, A., Safaraliev, M., Kamalov, F., Senyuk, M., & Gubin, P. (2024). Detection of Current Transformer Saturation Based on Machine Learning. Mathematics, 12(3), [389]. https://doi.org/10.3390/math12030389
Аннотация: One of the tasks in the operation of electric power systems is the correct functioning of the protection system and emergency automation algorithms. Instrument voltage and current transformers, operating in accordance with the laws of electromagnetism, are most often used for information support of the protection system and emergency automation algorithms. Magnetic core saturation of the specified current transformers can occur during faults. As a result, the correct functioning of the protection system and emergency automation algorithms is compromised. The consequences of current transformers saturation are mostly reflected in the main protections of network elements operating on a differential principle. This work aims to consider the analysis of current transformer saturation detection methods. The problem of identifying current transformer saturation is reduced to binary classification, and methods for solving the problem based on artificial neural networks, support vector machine, and decision tree algorithms are proposed. Computational experiments were performed, and their results were analyzed with imbalanced (dominance of the number of current transformer saturation modes over the number of modes with its normal operation) and balanced classes 0 (no current transformer saturation) and 1 (current transformer saturation). © 2024 by the authors.
Ключевые слова: ARTIFICIAL NEURAL NETWORKS
BINARY CLASSIFICATION TASKS
CURRENT TRANSFORMER
DECISION TREE
PROTECTION SYSTEM
SATURATION DETECTION
SUPPORT VECTOR MACHINE
URI: http://elar.urfu.ru/handle/10995/141738
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85184489581
Идентификатор WOS: 001159915400001
Идентификатор PURE: 52642786
ISSN: 2227-7390
DOI: 10.3390/math12030389
Сведения о поддержке: Russian Science Foundation, RSF, (23-79-01024); Russian Science Foundation, RSF
The reported study was supported by Russian Science Foundation, research project № 23-79-01024.
Карточка проекта РНФ: 23-79-01024
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85184489581.pdf5,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.