Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141738
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOdinaev, I.en
dc.contributor.authorPazderin, A.en
dc.contributor.authorSafaraliev, M.en
dc.contributor.authorKamalov, F.en
dc.contributor.authorSenyuk, M.en
dc.contributor.authorGubin, P. Y.en
dc.date.accessioned2025-02-25T11:02:25Z-
dc.date.available2025-02-25T11:02:25Z-
dc.date.issued2024-
dc.identifier.citationOdinaev, I., Pazderin, A., Safaraliev, M., Kamalov, F., Senyuk, M., & Gubin, P. (2024). Detection of Current Transformer Saturation Based on Machine Learning. Mathematics, 12(3), [389]. https://doi.org/10.3390/math12030389apa_pure
dc.identifier.issn2227-7390-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85184489581&doi=10.3390%2fmath12030389&partnerID=40&md5=744eb2a29a85391b294b4de96fff5b791
dc.identifier.otherhttps://www.mdpi.com/2227-7390/12/3/389/pdf?version=1706176950pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141738-
dc.description.abstractOne of the tasks in the operation of electric power systems is the correct functioning of the protection system and emergency automation algorithms. Instrument voltage and current transformers, operating in accordance with the laws of electromagnetism, are most often used for information support of the protection system and emergency automation algorithms. Magnetic core saturation of the specified current transformers can occur during faults. As a result, the correct functioning of the protection system and emergency automation algorithms is compromised. The consequences of current transformers saturation are mostly reflected in the main protections of network elements operating on a differential principle. This work aims to consider the analysis of current transformer saturation detection methods. The problem of identifying current transformer saturation is reduced to binary classification, and methods for solving the problem based on artificial neural networks, support vector machine, and decision tree algorithms are proposed. Computational experiments were performed, and their results were analyzed with imbalanced (dominance of the number of current transformer saturation modes over the number of modes with its normal operation) and balanced classes 0 (no current transformer saturation) and 1 (current transformer saturation). © 2024 by the authors.en
dc.description.sponsorshipRussian Science Foundation, RSF, (23-79-01024); Russian Science Foundation, RSFen
dc.description.sponsorshipThe reported study was supported by Russian Science Foundation, research project № 23-79-01024.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectARTIFICIAL NEURAL NETWORKSen
dc.subjectBINARY CLASSIFICATION TASKSen
dc.subjectCURRENT TRANSFORMERen
dc.subjectDECISION TREEen
dc.subjectPROTECTION SYSTEMen
dc.subjectSATURATION DETECTIONen
dc.subjectSUPPORT VECTOR MACHINEen
dc.titleDetection of Current Transformer Saturation Based on Machine Learningen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math12030389-
dc.identifier.scopus85184489581-
local.contributor.employeeOdinaev I., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeePazderin A., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSafaraliev M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeKamalov F., Department of Electrical Engineering, Canadian University Dubai, Dubai, 117781, United Arab Emiratesen
local.contributor.employeeSenyuk M., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeGubin P.Y., Department of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.issue3-
local.volume12-
dc.identifier.wos001159915400001-
local.contributor.departmentDepartment of Automated Electrical Systems, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electrical Engineering, Canadian University Dubai, Dubai, 117781, United Arab Emiratesen
local.identifier.pure52642786-
local.description.order389
local.identifier.eid2-s2.0-85184489581-
local.fund.rsf23-79-01024
local.identifier.wosWOS:001159915400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85184489581.pdf5,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.