Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141729
Название: Semi-Supervised Machine Learning Method for Predicting Observed Individual Risk Preference Using Gallup Data
Авторы: Ahmed, F.
Shamsuddin, M.
Sultana, T.
Shamsuddin, R.
Дата публикации: 2024
Издатель: Multidisciplinary Digital Publishing Institute (MDPI)
Библиографическое описание: Ahmed, F., Shamsuddin, M., Sultana, T., & Shamsuddin, R. (2024). Semi-Supervised Machine Learning Method for Predicting Observed Individual Risk Preference Using Gallup Data. Mathematical and Computational Applications, 29(2), [21]. https://doi.org/10.3390/mca29020021
Аннотация: Risk and uncertainty play a vital role in almost every significant economic decision, and an individual’s propensity to make riskier decisions also depends on various circumstances. This article aims to investigate the effects of social and economic covariates on an individual’s willingness to take general risks and extends the scope of existing works by using quantitative measures of risk-taking from the GPS and Gallup datasets (in addition to the qualitative measures used in the literature). Based on the available observed risk-taking data for one year, this article proposes a semi-supervised machine learning-based approach that can efficiently predict the observed risk index for those countries/individuals for years when the observed risk-taking index was not collected. We find that linear models are insufficient to capture certain patterns among risk-taking factors, and non-linear models, such as random forest regression, can obtain better root mean squared values than those reported in past literature. In addition to finding factors that agree with past studies, we also find that subjective well-being influences risk-taking behavior. © 2024 by the authors.
Ключевые слова: FINANCIAL RISK PREFERENCE
GENERAL RISKS
ORDINARY LEAST-SQUARE
SOCIAL ANDECONOMIC COVARIATES
SOCIODEMOGRAPHIC FACTORS
SUPERVISED MACHINE LEARNING
URI: http://elar.urfu.ru/handle/10995/141729
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Идентификатор SCOPUS: 85191406745
Идентификатор WOS: 001220369000001
Идентификатор PURE: 56638543
ISSN: 2297-8747
DOI: 10.3390/mca29020021
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85191406745.pdf1,83 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.