Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141729
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAhmed, F.en
dc.contributor.authorShamsuddin, M.en
dc.contributor.authorSultana, T.en
dc.contributor.authorShamsuddin, R.en
dc.date.accessioned2025-02-25T11:02:24Z-
dc.date.available2025-02-25T11:02:24Z-
dc.date.issued2024-
dc.identifier.citationAhmed, F., Shamsuddin, M., Sultana, T., & Shamsuddin, R. (2024). Semi-Supervised Machine Learning Method for Predicting Observed Individual Risk Preference Using Gallup Data. Mathematical and Computational Applications, 29(2), [21]. https://doi.org/10.3390/mca29020021apa_pure
dc.identifier.issn2297-8747-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access; Green Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85191406745&doi=10.3390%2fmca29020021&partnerID=40&md5=e1390222c2e4cd03166675ecaf9476131
dc.identifier.otherhttps://www.mdpi.com/2297-8747/29/2/21/pdf?version=1710496664pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141729-
dc.description.abstractRisk and uncertainty play a vital role in almost every significant economic decision, and an individual’s propensity to make riskier decisions also depends on various circumstances. This article aims to investigate the effects of social and economic covariates on an individual’s willingness to take general risks and extends the scope of existing works by using quantitative measures of risk-taking from the GPS and Gallup datasets (in addition to the qualitative measures used in the literature). Based on the available observed risk-taking data for one year, this article proposes a semi-supervised machine learning-based approach that can efficiently predict the observed risk index for those countries/individuals for years when the observed risk-taking index was not collected. We find that linear models are insufficient to capture certain patterns among risk-taking factors, and non-linear models, such as random forest regression, can obtain better root mean squared values than those reported in past literature. In addition to finding factors that agree with past studies, we also find that subjective well-being influences risk-taking behavior. © 2024 by the authors.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceMathematical and Computational Applications2
dc.sourceMathematical and Computational Applicationsen
dc.subjectFINANCIAL RISK PREFERENCEen
dc.subjectGENERAL RISKSen
dc.subjectORDINARY LEAST-SQUAREen
dc.subjectSOCIAL ANDECONOMIC COVARIATESen
dc.subjectSOCIODEMOGRAPHIC FACTORSen
dc.subjectSUPERVISED MACHINE LEARNINGen
dc.titleSemi-Supervised Machine Learning Method for Predicting Observed Individual Risk Preference Using Gallup Dataen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/mca29020021-
dc.identifier.scopus85191406745-
local.contributor.employeeAhmed F., Graduate School of Economics and Management, Ural Federal University, Lenin Ave., 51, Yekaterinburg, 620075, Russian Federation, Bangladesh Institute of Governance and Management, E-33, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladeshen
local.contributor.employeeShamsuddin M., Department of Economics, Dalhousie University, 6299 South St., Halifax, B3H 4R2, NS, Canadaen
local.contributor.employeeSultana T., Department of Economics, College of Business Administration, Southern Illinois University, Carbondale, 62901, IL, United Statesen
local.contributor.employeeShamsuddin R., Department of Computer Science, Oklahoma State University, Stillwater, 74078, OK, United Statesen
local.issue2-
local.volume29-
dc.identifier.wos001220369000001-
local.contributor.departmentGraduate School of Economics and Management, Ural Federal University, Lenin Ave., 51, Yekaterinburg, 620075, Russian Federationen
local.contributor.departmentBangladesh Institute of Governance and Management, E-33, Sher-E-Bangla Nagar, Dhaka, 1207, Bangladeshen
local.contributor.departmentDepartment of Economics, Dalhousie University, 6299 South St., Halifax, B3H 4R2, NS, Canadaen
local.contributor.departmentDepartment of Economics, College of Business Administration, Southern Illinois University, Carbondale, 62901, IL, United Statesen
local.contributor.departmentDepartment of Computer Science, Oklahoma State University, Stillwater, 74078, OK, United Statesen
local.identifier.pure56638543-
local.description.order21
local.identifier.eid2-s2.0-85191406745-
local.identifier.wosWOS:001220369000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85191406745.pdf1,83 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.