Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141572
Название: | On the product of almost discrete Grothendieck spaces |
Авторы: | Osipov, A. V. |
Дата публикации: | 2024 |
Издатель: | Elsevier B.V. |
Библиографическое описание: | Osipov, A. V. (2024). On the product of almost discrete Grothendieck spaces. Topology and its Applications, 350, [108919]. https://doi.org/10.1016/j.topol.2024.108919 |
Аннотация: | A topological space X is called almost discrete, if it has precisely one nonisolated point. In this paper, we get that for a countable product X=∏Xi of almost discrete spaces Xi the space Cp(X) of all continuous real-valued functions with the topology of pointwise convergence is a μ-space if, and only if, X is a weak q-space if, and only if, t(X)=ω if, and only if, X is functionally generated by the family of all its countable subspaces. This result makes it possible to solve Archangel'skii's problem on the product of Grothendieck spaces. It is proved that in the model of ZFC, obtained by adding one Cohen real, there are Grothendieck spaces X and Y such that X×Y is not weakly Grothendieck space. In (PFA): the product of any countable family almost discrete Grothendieck spaces is a Grothendieck space. © 2024 Elsevier B.V. |
Ключевые слова: | C<SUB>P</SUB>-THEORY FUNCTION SPACE GROTHENDIECK SPACE GROTHENDIECK'S THEOREM REALCOMPLETE TIGHTNESS WEAK Q-SPACE WEAKLY GROTHENDIECK SPACE Μ-SPACE |
URI: | http://elar.urfu.ru/handle/10995/141572 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85191328098 |
Идентификатор WOS: | 001237069100001 |
Идентификатор PURE: | 56638942 |
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2024.108919 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85191328098.pdf | 128,13 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.