Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141572
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOsipov, A. V.en
dc.date.accessioned2025-02-25T10:49:20Z-
dc.date.available2025-02-25T10:49:20Z-
dc.date.issued2024-
dc.identifier.citationOsipov, A. V. (2024). On the product of almost discrete Grothendieck spaces. Topology and its Applications, 350, [108919]. https://doi.org/10.1016/j.topol.2024.108919apa_pure
dc.identifier.issn0166-8641-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85191328098&doi=10.1016%2fj.topol.2024.108919&partnerID=40&md5=349ace550d7471381784ef0a8e2fe32a1
dc.identifier.otherhttps://arxiv.org/pdf/2312.10724pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141572-
dc.description.abstractA topological space X is called almost discrete, if it has precisely one nonisolated point. In this paper, we get that for a countable product X=∏Xi of almost discrete spaces Xi the space Cp(X) of all continuous real-valued functions with the topology of pointwise convergence is a μ-space if, and only if, X is a weak q-space if, and only if, t(X)=ω if, and only if, X is functionally generated by the family of all its countable subspaces. This result makes it possible to solve Archangel'skii's problem on the product of Grothendieck spaces. It is proved that in the model of ZFC, obtained by adding one Cohen real, there are Grothendieck spaces X and Y such that X×Y is not weakly Grothendieck space. In (PFA): the product of any countable family almost discrete Grothendieck spaces is a Grothendieck space. © 2024 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTopology and its Applications2
dc.sourceTopology and its Applicationsen
dc.subjectC<SUB>P</SUB>-THEORYen
dc.subjectFUNCTION SPACEen
dc.subjectGROTHENDIECK SPACEen
dc.subjectGROTHENDIECK'S THEOREMen
dc.subjectREALCOMPLETEen
dc.subjectTIGHTNESSen
dc.subjectWEAK Q-SPACEen
dc.subjectWEAKLY GROTHENDIECK SPACEen
dc.subjectΜ-SPACEen
dc.titleOn the product of almost discrete Grothendieck spacesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.doi10.1016/j.topol.2024.108919-
dc.identifier.scopus85191328098-
local.contributor.employeeOsipov A.V., Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation, Ural Federal University, Yekaterinburg, Russian Federationen
local.volume350-
dc.identifier.wos001237069100001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federationen
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federationen
local.identifier.pure56638942-
local.description.order108919
local.identifier.eid2-s2.0-85191328098-
local.identifier.wosWOS:001237069100001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85191328098.pdf128,13 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.