Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/141546
Title: | Guava fruit disease identification based on improved convolutional neural network |
Authors: | Hashan, A. M. Rahman, S. Md. T. Avinash, K. Ul, Islam, R. Md. R. Dey, S. |
Issue Date: | 2024 |
Publisher: | Institute of Advanced Engineering and Science |
Citation: | Mahamudul Hashan, A., Tariqur Rahman, S. M., Avinash, K., Ul islam, R. M. R., & Dey, S. (2024). Guava fruit disease identification based on improved convolutional neural network. International Journal of Electrical and Computer Engineering, 14(2), 1544-1551. https://doi.org/10.11591/ijece.v14i2.pp1544-1551, https://doi.org/10.11591/ijece.v14i2 |
Abstract: | Guava fruit cultivation is crucial for Asian economic development, with Indonesia producing 449,970 metric tons between 2022 and 2023. However, technology-based approaches can detect disease symptoms, enhancing production and mitigating economic losses by enhancing quality. In this paper, we introduce an accurate guava fruit disease detection (GFDI) system. It contains the generation of appropriate diseased images and the development of a novel improved convolutional neural network (improved-CNN) that is built depending on the principles of AlexNet. Also, several preprocessing techniques have been used, including data augmentation, contrast enhancement, image resizing, and dataset splitting. The proposed improved-CNN model is trained to identify three common guava fruit diseases using a dataset of 612 images. The experimental findings indicate that the proposed improved-CNN model achieve accuracy 98% for trains and 93% for tests using 0.001 learning rate, the model parameters are decreased by 50,106,831 compared with traditional AlexNet model. The findings of the investigation indicate that the deep learning model improves the accuracy and convergence rate for guava fruit disease prevention. © 2024 Institute of Advanced Engineering and Science. All rights reserved. |
Keywords: | AGRICULTURE AUTOMATION DEEP LEARNING GUAVA FRUIT DISEASE IMAGE PROCESSING |
URI: | http://elar.urfu.ru/handle/10995/141546 |
Access: | info:eu-repo/semantics/openAccess cc-by-sa |
SCOPUS ID: | 85185602294 |
PURE ID: | 53801544 |
ISSN: | 2722-2578 2088-8708 |
DOI: | 10.11591/ijece.v14i2.pp1544-1551 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85185602294.pdf | 562,19 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.