Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141546
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHashan, A. M.en
dc.contributor.authorRahman, S. Md. T.en
dc.contributor.authorAvinash, K.en
dc.contributor.authorUl, Islam, R. Md. R.en
dc.contributor.authorDey, S.en
dc.date.accessioned2025-02-25T10:48:59Z-
dc.date.available2025-02-25T10:48:59Z-
dc.date.issued2024-
dc.identifier.citationMahamudul Hashan, A., Tariqur Rahman, S. M., Avinash, K., Ul islam, R. M. R., & Dey, S. (2024). Guava fruit disease identification based on improved convolutional neural network. International Journal of Electrical and Computer Engineering, 14(2), 1544-1551. https://doi.org/10.11591/ijece.v14i2.pp1544-1551, https://doi.org/10.11591/ijece.v14i2apa_pure
dc.identifier.issn2722-2578-
dc.identifier.issn2088-8708-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85185602294&doi=10.11591%2fijece.v14i2.pp1544-1551&partnerID=40&md5=71ecd6736292751a95a95a7836f4adcb1
dc.identifier.otherhttps://ijece.iaescore.com/index.php/IJECE/article/download/34147/17229pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141546-
dc.description.abstractGuava fruit cultivation is crucial for Asian economic development, with Indonesia producing 449,970 metric tons between 2022 and 2023. However, technology-based approaches can detect disease symptoms, enhancing production and mitigating economic losses by enhancing quality. In this paper, we introduce an accurate guava fruit disease detection (GFDI) system. It contains the generation of appropriate diseased images and the development of a novel improved convolutional neural network (improved-CNN) that is built depending on the principles of AlexNet. Also, several preprocessing techniques have been used, including data augmentation, contrast enhancement, image resizing, and dataset splitting. The proposed improved-CNN model is trained to identify three common guava fruit diseases using a dataset of 612 images. The experimental findings indicate that the proposed improved-CNN model achieve accuracy 98% for trains and 93% for tests using 0.001 learning rate, the model parameters are decreased by 50,106,831 compared with traditional AlexNet model. The findings of the investigation indicate that the deep learning model improves the accuracy and convergence rate for guava fruit disease prevention. © 2024 Institute of Advanced Engineering and Science. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Advanced Engineering and Scienceen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-saother
dc.sourceInternational Journal of Electrical and Computer Engineering (IJECE)2
dc.sourceInternational Journal of Electrical and Computer Engineeringen
dc.subjectAGRICULTUREen
dc.subjectAUTOMATIONen
dc.subjectDEEP LEARNINGen
dc.subjectGUAVA FRUIT DISEASEen
dc.subjectIMAGE PROCESSINGen
dc.titleGuava fruit disease identification based on improved convolutional neural networken
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.11591/ijece.v14i2.pp1544-1551-
dc.identifier.scopus85185602294-
local.contributor.employeeHashan A.M., Department of Intelligent Information Technologies, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeRahman S.Md.T., Department of New Materials and Technologies, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeAvinash K., Department of Big Data Analytics and Video Analysis Methods, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeUl Islam R.Md.R., Department of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.employeeDey S., Department of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federationen
local.description.firstpage1544
local.description.lastpage1551
local.issue2-
local.volume14-
local.contributor.departmentDepartment of Intelligent Information Technologies, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.departmentDepartment of New Materials and Technologies, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.departmentDepartment of Big Data Analytics and Video Analysis Methods, Ural Federal University, Yekaterinburg, Russian Federationen
local.contributor.departmentDepartment of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federationen
local.identifier.pure53801544-
local.identifier.eid2-s2.0-85185602294-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85185602294.pdf562,19 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.