Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141546
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Hashan, A. M. | en |
dc.contributor.author | Rahman, S. Md. T. | en |
dc.contributor.author | Avinash, K. | en |
dc.contributor.author | Ul, Islam, R. Md. R. | en |
dc.contributor.author | Dey, S. | en |
dc.date.accessioned | 2025-02-25T10:48:59Z | - |
dc.date.available | 2025-02-25T10:48:59Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Mahamudul Hashan, A., Tariqur Rahman, S. M., Avinash, K., Ul islam, R. M. R., & Dey, S. (2024). Guava fruit disease identification based on improved convolutional neural network. International Journal of Electrical and Computer Engineering, 14(2), 1544-1551. https://doi.org/10.11591/ijece.v14i2.pp1544-1551, https://doi.org/10.11591/ijece.v14i2 | apa_pure |
dc.identifier.issn | 2722-2578 | - |
dc.identifier.issn | 2088-8708 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185602294&doi=10.11591%2fijece.v14i2.pp1544-1551&partnerID=40&md5=71ecd6736292751a95a95a7836f4adcb | 1 |
dc.identifier.other | https://ijece.iaescore.com/index.php/IJECE/article/download/34147/17229 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141546 | - |
dc.description.abstract | Guava fruit cultivation is crucial for Asian economic development, with Indonesia producing 449,970 metric tons between 2022 and 2023. However, technology-based approaches can detect disease symptoms, enhancing production and mitigating economic losses by enhancing quality. In this paper, we introduce an accurate guava fruit disease detection (GFDI) system. It contains the generation of appropriate diseased images and the development of a novel improved convolutional neural network (improved-CNN) that is built depending on the principles of AlexNet. Also, several preprocessing techniques have been used, including data augmentation, contrast enhancement, image resizing, and dataset splitting. The proposed improved-CNN model is trained to identify three common guava fruit diseases using a dataset of 612 images. The experimental findings indicate that the proposed improved-CNN model achieve accuracy 98% for trains and 93% for tests using 0.001 learning rate, the model parameters are decreased by 50,106,831 compared with traditional AlexNet model. The findings of the investigation indicate that the deep learning model improves the accuracy and convergence rate for guava fruit disease prevention. © 2024 Institute of Advanced Engineering and Science. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Advanced Engineering and Science | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by-sa | other |
dc.source | International Journal of Electrical and Computer Engineering (IJECE) | 2 |
dc.source | International Journal of Electrical and Computer Engineering | en |
dc.subject | AGRICULTURE | en |
dc.subject | AUTOMATION | en |
dc.subject | DEEP LEARNING | en |
dc.subject | GUAVA FRUIT DISEASE | en |
dc.subject | IMAGE PROCESSING | en |
dc.title | Guava fruit disease identification based on improved convolutional neural network | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.11591/ijece.v14i2.pp1544-1551 | - |
dc.identifier.scopus | 85185602294 | - |
local.contributor.employee | Hashan A.M., Department of Intelligent Information Technologies, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Rahman S.Md.T., Department of New Materials and Technologies, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Avinash K., Department of Big Data Analytics and Video Analysis Methods, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Ul Islam R.Md.R., Department of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.employee | Dey S., Department of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.description.firstpage | 1544 | |
local.description.lastpage | 1551 | |
local.issue | 2 | - |
local.volume | 14 | - |
local.contributor.department | Department of Intelligent Information Technologies, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.department | Department of New Materials and Technologies, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.department | Department of Big Data Analytics and Video Analysis Methods, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.contributor.department | Department of Information Technologies and Control Systems, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.identifier.pure | 53801544 | - |
local.identifier.eid | 2-s2.0-85185602294 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85185602294.pdf | 562,19 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.