Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141546
Название: Guava fruit disease identification based on improved convolutional neural network
Авторы: Hashan, A. M.
Rahman, S. Md. T.
Avinash, K.
Ul, Islam, R. Md. R.
Dey, S.
Дата публикации: 2024
Издатель: Institute of Advanced Engineering and Science
Библиографическое описание: Mahamudul Hashan, A., Tariqur Rahman, S. M., Avinash, K., Ul islam, R. M. R., & Dey, S. (2024). Guava fruit disease identification based on improved convolutional neural network. International Journal of Electrical and Computer Engineering, 14(2), 1544-1551. https://doi.org/10.11591/ijece.v14i2.pp1544-1551, https://doi.org/10.11591/ijece.v14i2
Аннотация: Guava fruit cultivation is crucial for Asian economic development, with Indonesia producing 449,970 metric tons between 2022 and 2023. However, technology-based approaches can detect disease symptoms, enhancing production and mitigating economic losses by enhancing quality. In this paper, we introduce an accurate guava fruit disease detection (GFDI) system. It contains the generation of appropriate diseased images and the development of a novel improved convolutional neural network (improved-CNN) that is built depending on the principles of AlexNet. Also, several preprocessing techniques have been used, including data augmentation, contrast enhancement, image resizing, and dataset splitting. The proposed improved-CNN model is trained to identify three common guava fruit diseases using a dataset of 612 images. The experimental findings indicate that the proposed improved-CNN model achieve accuracy 98% for trains and 93% for tests using 0.001 learning rate, the model parameters are decreased by 50,106,831 compared with traditional AlexNet model. The findings of the investigation indicate that the deep learning model improves the accuracy and convergence rate for guava fruit disease prevention. © 2024 Institute of Advanced Engineering and Science. All rights reserved.
Ключевые слова: AGRICULTURE
AUTOMATION
DEEP LEARNING
GUAVA FRUIT DISEASE
IMAGE PROCESSING
URI: http://elar.urfu.ru/handle/10995/141546
Условия доступа: info:eu-repo/semantics/openAccess
cc-by-sa
Идентификатор SCOPUS: 85185602294
Идентификатор PURE: 53801544
ISSN: 2722-2578
2088-8708
DOI: 10.11591/ijece.v14i2.pp1544-1551
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85185602294.pdf562,19 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.