Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/141541
Title: | DGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performance |
Authors: | Adegboye, O. R. Feda, A. K. Ojekemi, O. R. Agyekum, E. B. Khan, B. Kamel, S. |
Issue Date: | 2024 |
Publisher: | Nature Research |
Citation: | Adegboye, O., Feda, A., Ojekemi, O. R., Agyekum, E., Khan, B., & Kamel, S. (2024). DGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performance. Scientific Reports, 14(1), [1491]. https://doi.org/10.1038/s41598-023-50910-x |
Abstract: | This paper introduces DGS-SCSO, a novel optimizer derived from Sand Cat Swarm Optimization (SCSO), aiming to overcome inherent limitations in the original SCSO algorithm. The proposed optimizer integrates Dynamic Pinhole Imaging and Golden Sine Algorithm to mitigate issues like local optima entrapment, premature convergence, and delayed convergence. By leveraging the Dynamic Pinhole Imaging technique, DGS-SCSO enhances the optimizer's global exploration capability, while the Golden Sine Algorithm strategy improves exploitation, facilitating convergence towards optimal solutions. The algorithm's performance is systematically assessed across 20 standard benchmark functions, CEC2019 test functions, and two practical engineering problems. The outcome proves DGS-SCSO's superiority over the original SCSO algorithm, achieving an overall efficiency of 59.66% in 30 dimensions and 76.92% in 50 and 100 dimensions for optimization functions. It also demonstrated competitive results on engineering problems. Statistical analysis, including the Wilcoxon Rank Sum Test and Friedman Test, validate DGS-SCSO efficiency and significant improvement to the compared algorithms. © 2024, The Author(s). |
Keywords: | ALGORITHM ARTICLE BENCHMARKING BINOCULAR CONVERGENCE CAT CONTROLLED STUDY FRIEDMAN TEST NONHUMAN RANK SUM TEST SAND STATISTICAL ANALYSIS |
URI: | http://elar.urfu.ru/handle/10995/141541 |
Access: | info:eu-repo/semantics/openAccess cc-by |
SCOPUS ID: | 85182441659 |
PURE ID: | 51648952 |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-023-50910-x |
RSCF project card: | Tanta University; Faculty of Science, Tanta University |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85182441659.pdf | 12,05 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.