Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/141541
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAdegboye, O. R.en
dc.contributor.authorFeda, A. K.en
dc.contributor.authorOjekemi, O. R.en
dc.contributor.authorAgyekum, E. B.en
dc.contributor.authorKhan, B.en
dc.contributor.authorKamel, S.en
dc.date.accessioned2025-02-25T10:47:20Z-
dc.date.available2025-02-25T10:47:20Z-
dc.date.issued2024-
dc.identifier.citationAdegboye, O., Feda, A., Ojekemi, O. R., Agyekum, E., Khan, B., & Kamel, S. (2024). DGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performance. Scientific Reports, 14(1), [1491]. https://doi.org/10.1038/s41598-023-50910-xapa_pure
dc.identifier.issn2045-2322-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access; Green Open Access3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85182441659&doi=10.1038%2fs41598-023-50910-x&partnerID=40&md5=d49694764feb6002abb70d35287d55ea1
dc.identifier.otherhttps://www.nature.com/articles/s41598-023-50910-x.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/141541-
dc.description.abstractThis paper introduces DGS-SCSO, a novel optimizer derived from Sand Cat Swarm Optimization (SCSO), aiming to overcome inherent limitations in the original SCSO algorithm. The proposed optimizer integrates Dynamic Pinhole Imaging and Golden Sine Algorithm to mitigate issues like local optima entrapment, premature convergence, and delayed convergence. By leveraging the Dynamic Pinhole Imaging technique, DGS-SCSO enhances the optimizer's global exploration capability, while the Golden Sine Algorithm strategy improves exploitation, facilitating convergence towards optimal solutions. The algorithm's performance is systematically assessed across 20 standard benchmark functions, CEC2019 test functions, and two practical engineering problems. The outcome proves DGS-SCSO's superiority over the original SCSO algorithm, achieving an overall efficiency of 59.66% in 30 dimensions and 76.92% in 50 and 100 dimensions for optimization functions. It also demonstrated competitive results on engineering problems. Statistical analysis, including the Wilcoxon Rank Sum Test and Friedman Test, validate DGS-SCSO efficiency and significant improvement to the compared algorithms. © 2024, The Author(s).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNature Researchen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.sourceScientific Reports2
dc.sourceScientific Reportsen
dc.subjectALGORITHMen
dc.subjectARTICLEen
dc.subjectBENCHMARKINGen
dc.subjectBINOCULAR CONVERGENCEen
dc.subjectCATen
dc.subjectCONTROLLED STUDYen
dc.subjectFRIEDMAN TESTen
dc.subjectNONHUMANen
dc.subjectRANK SUM TESTen
dc.subjectSANDen
dc.subjectSTATISTICAL ANALYSISen
dc.titleDGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performanceen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1038/s41598-023-50910-x-
dc.identifier.scopus85182441659-
local.contributor.employeeAdegboye O.R., Management Information System Department, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.employeeFeda A.K., Management Information System Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.employeeOjekemi O.R., Business Administration Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.employeeAgyekum E.B., Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeKhan B., Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopiaen
local.contributor.employeeKamel S., Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypten
local.issue1-
local.volume14-
local.contributor.departmentManagement Information System Department, University of Mediterranean Karpasia, Mersin-10, Turkeyen
local.contributor.departmentManagement Information System Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.departmentBusiness Administration Department, European University of Lefke, Mersin-10, Turkeyen
local.contributor.departmentDepartment of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopiaen
local.contributor.departmentElectrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypten
local.identifier.pure51648952-
local.description.order1491
local.identifier.eid2-s2.0-85182441659-
local.fund.rsfTanta University; Faculty of Science, Tanta University
local.identifier.pmid38233528-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85182441659.pdf12,05 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.