Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/141541
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Adegboye, O. R. | en |
dc.contributor.author | Feda, A. K. | en |
dc.contributor.author | Ojekemi, O. R. | en |
dc.contributor.author | Agyekum, E. B. | en |
dc.contributor.author | Khan, B. | en |
dc.contributor.author | Kamel, S. | en |
dc.date.accessioned | 2025-02-25T10:47:20Z | - |
dc.date.available | 2025-02-25T10:47:20Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Adegboye, O., Feda, A., Ojekemi, O. R., Agyekum, E., Khan, B., & Kamel, S. (2024). DGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performance. Scientific Reports, 14(1), [1491]. https://doi.org/10.1038/s41598-023-50910-x | apa_pure |
dc.identifier.issn | 2045-2322 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Gold Open Access; Green Open Access | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85182441659&doi=10.1038%2fs41598-023-50910-x&partnerID=40&md5=d49694764feb6002abb70d35287d55ea | 1 |
dc.identifier.other | https://www.nature.com/articles/s41598-023-50910-x.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/141541 | - |
dc.description.abstract | This paper introduces DGS-SCSO, a novel optimizer derived from Sand Cat Swarm Optimization (SCSO), aiming to overcome inherent limitations in the original SCSO algorithm. The proposed optimizer integrates Dynamic Pinhole Imaging and Golden Sine Algorithm to mitigate issues like local optima entrapment, premature convergence, and delayed convergence. By leveraging the Dynamic Pinhole Imaging technique, DGS-SCSO enhances the optimizer's global exploration capability, while the Golden Sine Algorithm strategy improves exploitation, facilitating convergence towards optimal solutions. The algorithm's performance is systematically assessed across 20 standard benchmark functions, CEC2019 test functions, and two practical engineering problems. The outcome proves DGS-SCSO's superiority over the original SCSO algorithm, achieving an overall efficiency of 59.66% in 30 dimensions and 76.92% in 50 and 100 dimensions for optimization functions. It also demonstrated competitive results on engineering problems. Statistical analysis, including the Wilcoxon Rank Sum Test and Friedman Test, validate DGS-SCSO efficiency and significant improvement to the compared algorithms. © 2024, The Author(s). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Nature Research | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.source | Scientific Reports | 2 |
dc.source | Scientific Reports | en |
dc.subject | ALGORITHM | en |
dc.subject | ARTICLE | en |
dc.subject | BENCHMARKING | en |
dc.subject | BINOCULAR CONVERGENCE | en |
dc.subject | CAT | en |
dc.subject | CONTROLLED STUDY | en |
dc.subject | FRIEDMAN TEST | en |
dc.subject | NONHUMAN | en |
dc.subject | RANK SUM TEST | en |
dc.subject | SAND | en |
dc.subject | STATISTICAL ANALYSIS | en |
dc.title | DGS-SCSO: Enhancing Sand Cat Swarm Optimization with Dynamic Pinhole Imaging and Golden Sine Algorithm for improved numerical optimization performance | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1038/s41598-023-50910-x | - |
dc.identifier.scopus | 85182441659 | - |
local.contributor.employee | Adegboye O.R., Management Information System Department, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.employee | Feda A.K., Management Information System Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.employee | Ojekemi O.R., Business Administration Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.employee | Agyekum E.B., Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Khan B., Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia | en |
local.contributor.employee | Kamel S., Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt | en |
local.issue | 1 | - |
local.volume | 14 | - |
local.contributor.department | Management Information System Department, University of Mediterranean Karpasia, Mersin-10, Turkey | en |
local.contributor.department | Management Information System Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.department | Business Administration Department, European University of Lefke, Mersin-10, Turkey | en |
local.contributor.department | Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, 19 Mira Street, Ekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia | en |
local.contributor.department | Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt | en |
local.identifier.pure | 51648952 | - |
local.description.order | 1491 | |
local.identifier.eid | 2-s2.0-85182441659 | - |
local.fund.rsf | Tanta University; Faculty of Science, Tanta University | |
local.identifier.pmid | 38233528 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85182441659.pdf | 12,05 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.