Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/131518
Title: | RECOGNITION OF THE GROUP E6(2) BY GRUENBERG–KEGEL GRAPH |
Authors: | Guo, W. Kondrat’ev, A. S. Maslova, N. V. |
Issue Date: | 2022 |
Publisher: | Krasovskii Institute of Mathematics and Mechanics |
Citation: | Guo, W, Kondrat'ev, AS & Maslova, NV 2021, 'Recognition of the Group $E_6(2)$ by Gruenberg–Kegel Graph', Труды института математики и механики УрО РАН, Том. 27, № 4, стр. 263-268. https://doi.org/10.21538/0134-4889-2021-27-4-263-268 Guo, W., Kondrat'ev, A. S., & Maslova, N. V. (2021). Recognition of the Group $E_6(2)$ by Gruenberg–Kegel Graph. Труды института математики и механики УрО РАН, 27(4), 263-268. https://doi.org/10.21538/0134-4889-2021-27-4-263-268 |
Abstract: | The Gruenberg–Kegel graph (or the prime graph) of a finite group G is a simple graph Γ(G) whose vertices are the prime divisors of the order of G, and two distinct vertices p and q are adjacent in Γ(G) if and only if G contains an element of order pq. A finite group is called recognizable by Gruenberg–Kegel graph if it is uniquely determined up to isomorphism in the class of finite groups by its Gruenberg–Kegel graph. In this paper, we prove that the finite simple exceptional group of Lie type E6(2) is recognizable by its Gruenberg–Kegel graph. © 2021 The authors. |
Keywords: | EXCEPTIONAL GROUP OF LIE TYPE FINITE GROUP GRUENBERG–KEGEL GRAPH (PRIME GRAPH) SIMPLE GROUP |
URI: | http://elar.urfu.ru/handle/10995/131518 |
Access: | info:eu-repo/semantics/openAccess |
RSCI ID: | 47228431 |
SCOPUS ID: | 85121535931 |
WOS ID: | 000756004700018 |
PURE ID: | 29083938 df62c4c9-405d-407a-831c-1aebee5ef837 |
ISSN: | 0134-4889 |
DOI: | 10.21538/0134-4889-2021-27-4-263-268 |
metadata.dc.description.sponsorship: | National Natural Science Foundation of China, NSFC, (12171126) Ministry of Education and Science of the Russian Federation, Minobrnauka Wu Wen-Tsun Key Laboratory of Mathematics, Chinese Academy of Sciences, (075-02-2021-1387) The work is supported by the National Natural Science Foundation of China (project No. 12171126), by Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences, and by the Regional Scientific and Educational Mathematical Center “Ural Mathematical Center” under the agreement No. 075-02-2021-1387 with the Ministry of Science and Higher Education of the Russian Federation. |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85121535931.pdf | 150,97 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.