Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131518
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGuo, W.en
dc.contributor.authorKondrat’ev, A. S.en
dc.contributor.authorMaslova, N. V.en
dc.date.accessioned2024-04-08T11:07:49Z-
dc.date.available2024-04-08T11:07:49Z-
dc.date.issued2022-
dc.identifier.citationGuo, W, Kondrat'ev, AS & Maslova, NV 2021, 'Recognition of the Group $E_6(2)$ by Gruenberg–Kegel Graph', Труды института математики и механики УрО РАН, Том. 27, № 4, стр. 263-268. https://doi.org/10.21538/0134-4889-2021-27-4-263-268harvard_pure
dc.identifier.citationGuo, W., Kondrat'ev, A. S., & Maslova, N. V. (2021). Recognition of the Group $E_6(2)$ by Gruenberg–Kegel Graph. Труды института математики и механики УрО РАН, 27(4), 263-268. https://doi.org/10.21538/0134-4889-2021-27-4-263-268apa_pure
dc.identifier.issn0134-4889-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Bronze Open Access3
dc.identifier.otherhttp://journal.imm.uran.ru/sites/default/files/content/27_4/TrIMMUrORAN_2021_4_p263_L.pdf1
dc.identifier.otherhttp://journal.imm.uran.ru/sites/default/files/content/27_4/TrIMMUrORAN_2021_4_p263_L.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131518-
dc.description.abstractThe Gruenberg–Kegel graph (or the prime graph) of a finite group G is a simple graph Γ(G) whose vertices are the prime divisors of the order of G, and two distinct vertices p and q are adjacent in Γ(G) if and only if G contains an element of order pq. A finite group is called recognizable by Gruenberg–Kegel graph if it is uniquely determined up to isomorphism in the class of finite groups by its Gruenberg–Kegel graph. In this paper, we prove that the finite simple exceptional group of Lie type E6(2) is recognizable by its Gruenberg–Kegel graph. © 2021 The authors.en
dc.description.sponsorshipNational Natural Science Foundation of China, NSFC, (12171126)en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipWu Wen-Tsun Key Laboratory of Mathematics, Chinese Academy of Sciences, (075-02-2021-1387)en
dc.description.sponsorshipThe work is supported by the National Natural Science Foundation of China (project No. 12171126), by Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences, and by the Regional Scientific and Educational Mathematical Center “Ural Mathematical Center” under the agreement No. 075-02-2021-1387 with the Ministry of Science and Higher Education of the Russian Federation.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectEXCEPTIONAL GROUP OF LIE TYPEen
dc.subjectFINITE GROUPen
dc.subjectGRUENBERG–KEGEL GRAPH (PRIME GRAPH)en
dc.subjectSIMPLE GROUPen
dc.titleRECOGNITION OF THE GROUP E6(2) BY GRUENBERG–KEGEL GRAPHen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi47228431-
dc.identifier.doi10.21538/0134-4889-2021-27-4-263-268-
dc.identifier.scopus85121535931-
local.contributor.employeeGuo W., Hainan University, School of Science, Haikou, Hainan, 570228, China, University of Science and Technology of China, Department of Mathematics, Hefei, 230026, Chinaen
local.contributor.employeeKondrat’ev A.S., Krasovskii Institute of Mathematics and Mechanics, The Ural Branch, The Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation, Ural Mathematical Center, Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeMaslova N.V., Krasovskii Institute of Mathematics and Mechanics, The Ural Branch, The Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation, Ural Mathematical Center, Yekaterinburg, 620000, Russian Federationen
local.description.firstpage263-
local.description.lastpage268-
local.issue4-
local.volume27-
dc.identifier.wos000756004700018-
local.contributor.departmentHainan University, School of Science, Haikou, Hainan, 570228, Chinaen
local.contributor.departmentUniversity of Science and Technology of China, Department of Mathematics, Hefei, 230026, Chinaen
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, The Ural Branch, The Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federationen
local.contributor.departmentUral Federal University, Yekaterinburg, 620000, Russian Federationen
local.contributor.departmentUral Mathematical Center, Yekaterinburg, 620000, Russian Federationen
local.identifier.pure29083938-
local.identifier.puredf62c4c9-405d-407a-831c-1aebee5ef837uuid
local.identifier.eid2-s2.0-85121535931-
local.identifier.wosWOS:000756004700018-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85121535931.pdf150,97 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.