Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/131460
Title: Exact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluids
Authors: Burmasheva, N. V.
Prosviryakov, E. Yu.
Issue Date: 2022
Publisher: Institute of Computer Science Izhevsk
Citation: Burmasheva, NV & Prosviryakov, EY 2022, 'Exact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluids', Russian Journal of Nonlinear Dynamics, Том. 18, № 3, стр. 397-410. https://doi.org/10.20537/nd220305
Burmasheva, N. V., & Prosviryakov, E. Y. (2022). Exact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluids. Russian Journal of Nonlinear Dynamics, 18(3), 397-410. https://doi.org/10.20537/nd220305
Abstract: In this paper, we report on several classes of exact solutions for describing the convective flows of multilayer fluids. We show that the class of exact Lin - Sidorov - Aristov solutions is an exact solution to the Oberbeck - Boussinesq system for a fluid discretely stratified in density and viscosity. This class of exact solutions is characterized by the linear dependence of the velocity field on part of coordinates. In this case, the pressure field and the temperature field are quadratic forms. The application of the velocity field with nonlinear dependence on two coordinates has stimulated further development of the Lin - Sidorov - Aristov class. The values of the degrees of the forms of hydrodynamical fields satisfying the Oberbeck - Boussinesq equation are determined. Special attention is given to convective shear flows since the reduced Oberbeck - Boussinesq system will be overdetermined. Conditions for solvability within the framework of these classes are formulated. © 2022 Institute of Computer Science Izhevsk. All rights reserved.
Keywords: EXACT SOLUTION
MULTILAYER FLUIDS
OBERBECK - BOUSSINESQ EQUATIONS
SELF-SIMILAR FLOWS WITH SPATIAL ACCELERATION
SHEAR FLOWS
URI: http://elar.urfu.ru/handle/10995/131460
Access: info:eu-repo/semantics/openAccess
cc-by-nd
License text: https://creativecommons.org/licenses/by-nd/4.0/
RSCI ID: 50264545
SCOPUS ID: 85142927313
PURE ID: 32803541
0e7fe444-2c17-42ef-9fa2-693413519de3
ISSN: 2658-5324
DOI: 10.20537/nd220305
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85142927313.pdf284,87 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons