Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131460
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBurmasheva, N. V.en
dc.contributor.authorProsviryakov, E. Yu.en
dc.date.accessioned2024-04-08T11:07:27Z-
dc.date.available2024-04-08T11:07:27Z-
dc.date.issued2022-
dc.identifier.citationBurmasheva, NV & Prosviryakov, EY 2022, 'Exact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluids', Russian Journal of Nonlinear Dynamics, Том. 18, № 3, стр. 397-410. https://doi.org/10.20537/nd220305harvard_pure
dc.identifier.citationBurmasheva, N. V., & Prosviryakov, E. Y. (2022). Exact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluids. Russian Journal of Nonlinear Dynamics, 18(3), 397-410. https://doi.org/10.20537/nd220305apa_pure
dc.identifier.issn2658-5324-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Gold Open Access3
dc.identifier.otherhttp://nd.ics.org.ru/upload/iblock/833/nd220305.pdf1
dc.identifier.otherhttp://nd.ics.org.ru/upload/iblock/833/nd220305.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131460-
dc.description.abstractIn this paper, we report on several classes of exact solutions for describing the convective flows of multilayer fluids. We show that the class of exact Lin - Sidorov - Aristov solutions is an exact solution to the Oberbeck - Boussinesq system for a fluid discretely stratified in density and viscosity. This class of exact solutions is characterized by the linear dependence of the velocity field on part of coordinates. In this case, the pressure field and the temperature field are quadratic forms. The application of the velocity field with nonlinear dependence on two coordinates has stimulated further development of the Lin - Sidorov - Aristov class. The values of the degrees of the forms of hydrodynamical fields satisfying the Oberbeck - Boussinesq equation are determined. Special attention is given to convective shear flows since the reduced Oberbeck - Boussinesq system will be overdetermined. Conditions for solvability within the framework of these classes are formulated. © 2022 Institute of Computer Science Izhevsk. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Computer Science Izhevsken
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-ndother
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/unpaywall
dc.sourceNelineinaya Dinamika2
dc.sourceRussian Journal of Nonlinear Dynamicsen
dc.subjectEXACT SOLUTIONen
dc.subjectMULTILAYER FLUIDSen
dc.subjectOBERBECK - BOUSSINESQ EQUATIONSen
dc.subjectSELF-SIMILAR FLOWS WITH SPATIAL ACCELERATIONen
dc.subjectSHEAR FLOWSen
dc.titleExact Solutions to the Navier - Stokes Equations for Describing the Convective Flows of Multilayer Fluidsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi50264545-
dc.identifier.doi10.20537/nd220305-
dc.identifier.scopus85142927313-
local.contributor.employeeBurmasheva N.V., Instutute of Engineering Science, Ural Branch, The Russian Academy of Sciences, ul. Komsomolskaya 34, Ekaterinburg, 620049, Russian Federationen
local.contributor.employeeProsviryakov E.Yu., Ural Federal University, ul. Mira 19, Ekaterinburg, 620002, Russian Federationen
local.description.firstpage397-
local.description.lastpage410-
local.issue3-
local.volume18-
local.contributor.departmentInstutute of Engineering Science, Ural Branch, The Russian Academy of Sciences, ul. Komsomolskaya 34, Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentUral Federal University, ul. Mira 19, Ekaterinburg, 620002, Russian Federationen
local.identifier.pure32803541-
local.identifier.pure0e7fe444-2c17-42ef-9fa2-693413519de3uuid
local.identifier.eid2-s2.0-85142927313-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85142927313.pdf284,87 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons