Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/131364
Title: A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions
Authors: Hendy, A. S.
Van, Bockstal, K.
Issue Date: 2022
Publisher: Springer
Citation: Hendy, AS & Van Bockstal, K 2022, 'A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions', Numerical Algorithms, Том. 90, № 2, стр. 809-832. https://doi.org/10.1007/s11075-021-01210-w
Hendy, A. S., & Van Bockstal, K. (2022). A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions. Numerical Algorithms, 90(2), 809-832. https://doi.org/10.1007/s11075-021-01210-w
Abstract: An inverse source problem for non-smooth multiterm time Caputo fractional diffusion with fractional order designed as β0 < β1 < ⋯ < βM < 1 is the case of study in a bounded Lipschitz domain in ℝd. The missing solely time-dependent source function is reconstructed from an additional integral measurement. The existence, uniqueness and regularity of a weak solution for the inverse source problem is investigated. We design a numerical algorithm based on Rothe’s method over graded meshes, derive a priori estimates and prove convergence of iterates towards the exact solution. An essential feature of the multiterm time Caputo fractional subdiffusion problem is that the solution possibly lacks the smoothness near the initial time, although it would be smooth away from t = 0. In this contribution, we will establish an extension of Grönwall’s inequalities for multiterm fractional operators. This extension will be crucial for showing the existence of a unique solution to the inverse problem. The theoretical obtained results are supported by some numerical experiments. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Keywords: CONVERGENCE
GRADED MESHES
INVERSE SOURCE PROBLEM
MULTITERM FRACTIONAL DIFFUSION
NON-UNIFORM ROTHE’S METHOD
PRIOR ESTIMATES
URI: http://elar.urfu.ru/handle/10995/131364
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85117946648
WOS ID: 000710835800001
PURE ID: 30098368
803ec3cf-eecd-4c84-a713-a9a1ad370bdc
ISSN: 1017-1398
DOI: 10.1007/s11075-021-01210-w
Sponsorship: Research Foundation - Flanders, (106016/12P2919N)
Fonds Wetenschappelijk Onderzoek, FWO
K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85117946648.pdf407,12 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.