Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/131364
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Hendy, A. S. | en |
dc.contributor.author | Van, Bockstal, K. | en |
dc.date.accessioned | 2024-04-08T11:06:54Z | - |
dc.date.available | 2024-04-08T11:06:54Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Hendy, AS & Van Bockstal, K 2022, 'A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions', Numerical Algorithms, Том. 90, № 2, стр. 809-832. https://doi.org/10.1007/s11075-021-01210-w | harvard_pure |
dc.identifier.citation | Hendy, A. S., & Van Bockstal, K. (2022). A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions. Numerical Algorithms, 90(2), 809-832. https://doi.org/10.1007/s11075-021-01210-w | apa_pure |
dc.identifier.issn | 1017-1398 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access; Green Open Access | 3 |
dc.identifier.other | https://biblio.ugent.be/publication/8747792/file/8747805.pdf | 1 |
dc.identifier.other | https://biblio.ugent.be/publication/8747792/file/8747805.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/131364 | - |
dc.description.abstract | An inverse source problem for non-smooth multiterm time Caputo fractional diffusion with fractional order designed as β0 < β1 < ⋯ < βM < 1 is the case of study in a bounded Lipschitz domain in ℝd. The missing solely time-dependent source function is reconstructed from an additional integral measurement. The existence, uniqueness and regularity of a weak solution for the inverse source problem is investigated. We design a numerical algorithm based on Rothe’s method over graded meshes, derive a priori estimates and prove convergence of iterates towards the exact solution. An essential feature of the multiterm time Caputo fractional subdiffusion problem is that the solution possibly lacks the smoothness near the initial time, although it would be smooth away from t = 0. In this contribution, we will establish an extension of Grönwall’s inequalities for multiterm fractional operators. This extension will be crucial for showing the existence of a unique solution to the inverse problem. The theoretical obtained results are supported by some numerical experiments. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. | en |
dc.description.sponsorship | Research Foundation - Flanders, (106016/12P2919N) | en |
dc.description.sponsorship | Fonds Wetenschappelijk Onderzoek, FWO | en |
dc.description.sponsorship | K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Numerical Algorithms | 2 |
dc.source | Numerical Algorithms | en |
dc.subject | CONVERGENCE | en |
dc.subject | GRADED MESHES | en |
dc.subject | INVERSE SOURCE PROBLEM | en |
dc.subject | MULTITERM FRACTIONAL DIFFUSION | en |
dc.subject | NON-UNIFORM ROTHE’S METHOD | en |
dc.subject | PRIOR ESTIMATES | en |
dc.title | A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/s11075-021-01210-w | - |
dc.identifier.scopus | 85117946648 | - |
local.contributor.employee | Hendy A.S., Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt, Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Van Bockstal K., Department of Electronics and Information systems, Research Group NaM², Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.description.firstpage | 809 | - |
local.description.lastpage | 832 | - |
local.issue | 2 | - |
local.volume | 90 | - |
dc.identifier.wos | 000710835800001 | - |
local.contributor.department | Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt | en |
local.contributor.department | Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Electronics and Information systems, Research Group NaM², Ghent University, Krijgslaan 281, Ghent, 9000, Belgium | en |
local.identifier.pure | 30098368 | - |
local.identifier.pure | 803ec3cf-eecd-4c84-a713-a9a1ad370bdc | uuid |
local.identifier.eid | 2-s2.0-85117946648 | - |
local.identifier.wos | WOS:000710835800001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85117946648.pdf | 407,12 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.