Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131364
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHendy, A. S.en
dc.contributor.authorVan, Bockstal, K.en
dc.date.accessioned2024-04-08T11:06:54Z-
dc.date.available2024-04-08T11:06:54Z-
dc.date.issued2022-
dc.identifier.citationHendy, AS & Van Bockstal, K 2022, 'A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions', Numerical Algorithms, Том. 90, № 2, стр. 809-832. https://doi.org/10.1007/s11075-021-01210-wharvard_pure
dc.identifier.citationHendy, A. S., & Van Bockstal, K. (2022). A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions. Numerical Algorithms, 90(2), 809-832. https://doi.org/10.1007/s11075-021-01210-wapa_pure
dc.identifier.issn1017-1398-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://biblio.ugent.be/publication/8747792/file/8747805.pdf1
dc.identifier.otherhttps://biblio.ugent.be/publication/8747792/file/8747805.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131364-
dc.description.abstractAn inverse source problem for non-smooth multiterm time Caputo fractional diffusion with fractional order designed as β0 < β1 < ⋯ < βM < 1 is the case of study in a bounded Lipschitz domain in ℝd. The missing solely time-dependent source function is reconstructed from an additional integral measurement. The existence, uniqueness and regularity of a weak solution for the inverse source problem is investigated. We design a numerical algorithm based on Rothe’s method over graded meshes, derive a priori estimates and prove convergence of iterates towards the exact solution. An essential feature of the multiterm time Caputo fractional subdiffusion problem is that the solution possibly lacks the smoothness near the initial time, although it would be smooth away from t = 0. In this contribution, we will establish an extension of Grönwall’s inequalities for multiterm fractional operators. This extension will be crucial for showing the existence of a unique solution to the inverse problem. The theoretical obtained results are supported by some numerical experiments. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en
dc.description.sponsorshipResearch Foundation - Flanders, (106016/12P2919N)en
dc.description.sponsorshipFonds Wetenschappelijk Onderzoek, FWOen
dc.description.sponsorshipK. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceNumerical Algorithms2
dc.sourceNumerical Algorithmsen
dc.subjectCONVERGENCEen
dc.subjectGRADED MESHESen
dc.subjectINVERSE SOURCE PROBLEMen
dc.subjectMULTITERM FRACTIONAL DIFFUSIONen
dc.subjectNON-UNIFORM ROTHE’S METHODen
dc.subjectPRIOR ESTIMATESen
dc.titleA solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s11075-021-01210-w-
dc.identifier.scopus85117946648-
local.contributor.employeeHendy A.S., Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypt, Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeVan Bockstal K., Department of Electronics and Information systems, Research Group NaM², Ghent University, Krijgslaan 281, Ghent, 9000, Belgiumen
local.description.firstpage809-
local.description.lastpage832-
local.issue2-
local.volume90-
dc.identifier.wos000710835800001-
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electronics and Information systems, Research Group NaM², Ghent University, Krijgslaan 281, Ghent, 9000, Belgiumen
local.identifier.pure30098368-
local.identifier.pure803ec3cf-eecd-4c84-a713-a9a1ad370bdcuuid
local.identifier.eid2-s2.0-85117946648-
local.identifier.wosWOS:000710835800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85117946648.pdf407,12 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.