Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131168
Название: Computational anatomy atlas using multilayer perceptron with Lipschitz regularization
Авторы: Ushenin, K.
Dordiuk, V.
Dzhigil, M.
Дата публикации: 2022
Издатель: Institute of Electrical and Electronics Engineers Inc.
Библиографическое описание: Ushenin, K, Dordiuk, V & Dzhigil, M 2022, Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings. SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings, Institute of Electrical and Electronics Engineers Inc., стр. 680-683, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 11/11/2022. https://doi.org/10.1109/SIBIRCON56155.2022.10016940
Ushenin, K., Dordiuk, V., & Dzhigil, M. (2022). Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings (стр. 680-683). (SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SIBIRCON56155.2022.10016940
Аннотация: A computational anatomy atlas is a set of internal organ geometries. It is based on data of real patients and complemented with virtual cases by using a some numerical approach. Atlases are in demand in computational physiology, especially in cardiological and neurophysiological applications. Usually, atlas generation uses explicit object representation, such as voxel models or surface meshes. In this paper, we propose a method of atlas generation using an implicit representation of 3D objects. Our approach has two key stages. The first stage converts voxel models of segmented organs to implicit form using the usual multilayer perceptron. This stage smooths the model and reduces memory consumption. The second stage uses a multilayer perceptron with Lipschitz regularization. This neural network provides a smooth transition between implicitly defined 3D geometries. Our work shows examples of models of the left and right human ventricles. All code and data for this work are open. © 2022 IEEE.
Ключевые слова: COMPUTATIONAL ANATOMY ATLAS
IMPLICIT REPRESENTATION
LIPSCHITZ CONTINUITY
LIPSCHITZ REGULARIZATION
ML-ENGINEERING
COMPUTER VISION
MULTILAYER NEURAL NETWORKS
ATLAS GENERATION
COMPUTATIONAL ANATOMY
COMPUTATIONAL ANATOMY ATLAS
IMPLICIT REPRESENTATION
LIPSCHITZ
LIPSCHITZ CONTINUITY
LIPSCHITZ REGULARIZATION
ML-ENGINEERING
MULTILAYERS PERCEPTRONS
REGULARISATION
MULTILAYERS
URI: http://elar.urfu.ru/handle/10995/131168
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 11 November 2022 through 13 November 2022
Дата конференции/семинара: 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022
Идентификатор SCOPUS: 85147528131
Идентификатор PURE: 34717581
ba2bfc34-9088-4ae3-aee4-1cb636436096
ISBN: 978-166546480-2
DOI: 10.1109/SIBIRCON56155.2022.10016940
Сведения о поддержке: Russian Science Foundation, RSF, (RSF 22-21-00930)
This work has been supported by the grants the Russian Science Foundation, RSF 22-21-00930.
Карточка проекта РНФ: 22-21-00930
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85147528131.pdf3,06 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.