Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131168
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorUshenin, K.en
dc.contributor.authorDordiuk, V.en
dc.contributor.authorDzhigil, M.en
dc.date.accessioned2024-04-08T11:05:23Z-
dc.date.available2024-04-08T11:05:23Z-
dc.date.issued2022-
dc.identifier.citationUshenin, K, Dordiuk, V & Dzhigil, M 2022, Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings. SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings, Institute of Electrical and Electronics Engineers Inc., стр. 680-683, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 11/11/2022. https://doi.org/10.1109/SIBIRCON56155.2022.10016940harvard_pure
dc.identifier.citationUshenin, K., Dordiuk, V., & Dzhigil, M. (2022). Computational anatomy atlas using multilayer perceptron with Lipschitz regularization. в SIBIRCON 2022 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings (стр. 680-683). (SIBIRCON - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SIBIRCON56155.2022.10016940apa_pure
dc.identifier.isbn978-166546480-2-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access; Green Open Access3
dc.identifier.otherhttps://arxiv.org/pdf/2211.031221
dc.identifier.otherhttps://arxiv.org/pdf/2211.03122pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/131168-
dc.description.abstractA computational anatomy atlas is a set of internal organ geometries. It is based on data of real patients and complemented with virtual cases by using a some numerical approach. Atlases are in demand in computational physiology, especially in cardiological and neurophysiological applications. Usually, atlas generation uses explicit object representation, such as voxel models or surface meshes. In this paper, we propose a method of atlas generation using an implicit representation of 3D objects. Our approach has two key stages. The first stage converts voxel models of segmented organs to implicit form using the usual multilayer perceptron. This stage smooths the model and reduces memory consumption. The second stage uses a multilayer perceptron with Lipschitz regularization. This neural network provides a smooth transition between implicitly defined 3D geometries. Our work shows examples of models of the left and right human ventricles. All code and data for this work are open. © 2022 IEEE.en
dc.description.sponsorshipRussian Science Foundation, RSF, (RSF 22-21-00930)en
dc.description.sponsorshipThis work has been supported by the grants the Russian Science Foundation, RSF 22-21-00930.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.relationinfo:eu-repo/grantAgreement/RSF//22-21-00930en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.source2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)2
dc.source2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022en
dc.subjectCOMPUTATIONAL ANATOMY ATLASen
dc.subjectIMPLICIT REPRESENTATIONen
dc.subjectLIPSCHITZ CONTINUITYen
dc.subjectLIPSCHITZ REGULARIZATIONen
dc.subjectML-ENGINEERINGen
dc.subjectCOMPUTER VISIONen
dc.subjectMULTILAYER NEURAL NETWORKSen
dc.subjectATLAS GENERATIONen
dc.subjectCOMPUTATIONAL ANATOMYen
dc.subjectCOMPUTATIONAL ANATOMY ATLASen
dc.subjectIMPLICIT REPRESENTATIONen
dc.subjectLIPSCHITZen
dc.subjectLIPSCHITZ CONTINUITYen
dc.subjectLIPSCHITZ REGULARIZATIONen
dc.subjectML-ENGINEERINGen
dc.subjectMULTILAYERS PERCEPTRONSen
dc.subjectREGULARISATIONen
dc.subjectMULTILAYERSen
dc.titleComputational anatomy atlas using multilayer perceptron with Lipschitz regularizationen
dc.typeConference paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.conference.name11 November 2022 through 13 November 2022en
dc.conference.date2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2022-
dc.identifier.doi10.1109/SIBIRCON56155.2022.10016940-
dc.identifier.scopus85147528131-
local.contributor.employeeUshenin K., Institute of Immunology and Physiology, Ekaterinburg, Russian Federation, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeDordiuk V., Institute of Immunology and Physiology, Ekaterinburg, Russian Federation, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeDzhigil M., Ural Federal University, Ekaterinburg, Russian Federationen
local.description.firstpage680-
local.description.lastpage683-
local.contributor.departmentInstitute of Immunology and Physiology, Ekaterinburg, Russian Federationen
local.contributor.departmentUral Federal University, Ekaterinburg, Russian Federationen
local.identifier.pure34717581-
local.identifier.pureba2bfc34-9088-4ae3-aee4-1cb636436096uuid
local.identifier.eid2-s2.0-85147528131-
local.fund.rsf22-21-00930-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85147528131.pdf3,06 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.