Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/130974
Title: | Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer |
Authors: | Kulyabin, M. Zhdanov, A. Dolganov, A. Ronkin, M. Borisov, V. Maier, A. |
Issue Date: | 2023 |
Citation: | Kulyabin, M, Zhdanov, A, Dolganov, A, Ronkin, M, Borisov, V & Maier, A 2023, 'Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer', Sensors, Том. 23, № 21, 8727. https://doi.org/10.3390/s23218727 Kulyabin, M., Zhdanov, A., Dolganov, A., Ronkin, M., Borisov, V., & Maier, A. (2023). Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors, 23(21), [8727]. https://doi.org/10.3390/s23218727 |
Abstract: | The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work. |
Keywords: | BIOMEDICAL RESEARCH CLASSIFICATION DEEP LEARNING ELECTRORETINOGRAM ELECTRORETINOGRAPHY ERG WAVELET ANALYSIS ADULT CHILD COLOR VISION ELECTRORETINOGRAPHY HUMAN MACHINE LEARNING PHYSIOLOGY PROCEDURES RETINA WAVELET ANALYSIS ADULT CHILD COLOR VISION ELECTRORETINOGRAPHY HUMANS MACHINE LEARNING RETINA WAVELET ANALYSIS |
URI: | http://elar.urfu.ru/handle/10995/130974 |
Access: | info:eu-repo/semantics/openAccess cc-by |
License text: | https://creativecommons.org/licenses/by/4.0/ |
SCOPUS ID: | 85176902341 |
WOS ID: | 001100427400001 |
PURE ID: | 48542935 |
ISSN: | 1424-8220 |
DOI: | 10.3390/s23218727 |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85176902341.pdf | 3,76 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License