Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130974
Title: Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer
Authors: Kulyabin, M.
Zhdanov, A.
Dolganov, A.
Ronkin, M.
Borisov, V.
Maier, A.
Issue Date: 2023
Citation: Kulyabin, M, Zhdanov, A, Dolganov, A, Ronkin, M, Borisov, V & Maier, A 2023, 'Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer', Sensors, Том. 23, № 21, 8727. https://doi.org/10.3390/s23218727
Kulyabin, M., Zhdanov, A., Dolganov, A., Ronkin, M., Borisov, V., & Maier, A. (2023). Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors, 23(21), [8727]. https://doi.org/10.3390/s23218727
Abstract: The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work.
Keywords: BIOMEDICAL RESEARCH
CLASSIFICATION
DEEP LEARNING
ELECTRORETINOGRAM
ELECTRORETINOGRAPHY
ERG
WAVELET ANALYSIS
ADULT
CHILD
COLOR VISION
ELECTRORETINOGRAPHY
HUMAN
MACHINE LEARNING
PHYSIOLOGY
PROCEDURES
RETINA
WAVELET ANALYSIS
ADULT
CHILD
COLOR VISION
ELECTRORETINOGRAPHY
HUMANS
MACHINE LEARNING
RETINA
WAVELET ANALYSIS
URI: http://elar.urfu.ru/handle/10995/130974
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85176902341
WOS ID: 001100427400001
PURE ID: 48542935
ISSN: 1424-8220
DOI: 10.3390/s23218727
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85176902341.pdf3,76 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons