Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130974
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKulyabin, M.en
dc.contributor.authorZhdanov, A.en
dc.contributor.authorDolganov, A.en
dc.contributor.authorRonkin, M.en
dc.contributor.authorBorisov, V.en
dc.contributor.authorMaier, A.en
dc.date.accessioned2024-04-05T16:36:37Z-
dc.date.available2024-04-05T16:36:37Z-
dc.date.issued2023-
dc.identifier.citationKulyabin, M, Zhdanov, A, Dolganov, A, Ronkin, M, Borisov, V & Maier, A 2023, 'Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer', Sensors, Том. 23, № 21, 8727. https://doi.org/10.3390/s23218727harvard_pure
dc.identifier.citationKulyabin, M., Zhdanov, A., Dolganov, A., Ronkin, M., Borisov, V., & Maier, A. (2023). Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors, 23(21), [8727]. https://doi.org/10.3390/s23218727apa_pure
dc.identifier.issn1424-8220-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85176902341&doi=10.3390%2fs23218727&partnerID=40&md5=a7422368b7887f59532c6920557cb1d81
dc.identifier.otherhttps://www.mdpi.com/1424-8220/23/21/8727/pdf?version=1698301695pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130974-
dc.description.abstractThe electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceSensors2
dc.sourceSensors (Basel, Switzerland)en
dc.subjectBIOMEDICAL RESEARCHen
dc.subjectCLASSIFICATIONen
dc.subjectDEEP LEARNINGen
dc.subjectELECTRORETINOGRAMen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectERGen
dc.subjectWAVELET ANALYSISen
dc.subjectADULTen
dc.subjectCHILDen
dc.subjectCOLOR VISIONen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectHUMANen
dc.subjectMACHINE LEARNINGen
dc.subjectPHYSIOLOGYen
dc.subjectPROCEDURESen
dc.subjectRETINAen
dc.subjectWAVELET ANALYSISen
dc.subjectADULTen
dc.subjectCHILDen
dc.subjectCOLOR VISIONen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectHUMANSen
dc.subjectMACHINE LEARNINGen
dc.subjectRETINAen
dc.subjectWAVELET ANALYSISen
dc.titleEnhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformeren
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/s23218727-
dc.identifier.scopus85176902341-
local.contributor.employeeKulyabin, M., Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germanyen
local.contributor.employeeZhdanov, A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeDolganov, A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeRonkin, M., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeBorisov, V., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeMaier, A., Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germanyen
local.issue21-
local.volume23-
dc.identifier.wos001100427400001-
local.contributor.departmentPattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germanyen
local.contributor.departmentEngineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure48542935-
local.identifier.eid2-s2.0-85176902341-
local.identifier.wosWOS:001100427400001-
local.identifier.pmid37960427-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85176902341.pdf3,76 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons