Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130974
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kulyabin, M. | en |
dc.contributor.author | Zhdanov, A. | en |
dc.contributor.author | Dolganov, A. | en |
dc.contributor.author | Ronkin, M. | en |
dc.contributor.author | Borisov, V. | en |
dc.contributor.author | Maier, A. | en |
dc.date.accessioned | 2024-04-05T16:36:37Z | - |
dc.date.available | 2024-04-05T16:36:37Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Kulyabin, M, Zhdanov, A, Dolganov, A, Ronkin, M, Borisov, V & Maier, A 2023, 'Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer', Sensors, Том. 23, № 21, 8727. https://doi.org/10.3390/s23218727 | harvard_pure |
dc.identifier.citation | Kulyabin, M., Zhdanov, A., Dolganov, A., Ronkin, M., Borisov, V., & Maier, A. (2023). Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer. Sensors, 23(21), [8727]. https://doi.org/10.3390/s23218727 | apa_pure |
dc.identifier.issn | 1424-8220 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176902341&doi=10.3390%2fs23218727&partnerID=40&md5=a7422368b7887f59532c6920557cb1d8 | 1 |
dc.identifier.other | https://www.mdpi.com/1424-8220/23/21/8727/pdf?version=1698301695 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130974 | - |
dc.description.abstract | The electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control. This study aims to improve the classification accuracy of the previous work using the combination of three optimal mother wavelet functions. We apply Continuous Wavelet Transform (CWT) on a dataset of mixed pediatric and adult ERG signals and show the possibility of simultaneous analysis of the signals. The modern Visual Transformer-based architectures are tested on a time-frequency representation of the signals. The method provides 88% classification accuracy for Maximum 2.0 ERG, 85% for Scotopic 2.0, and 91% for Photopic 2.0 protocols, which on average improves the result by 7.6% compared to previous work. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Sensors | 2 |
dc.source | Sensors (Basel, Switzerland) | en |
dc.subject | BIOMEDICAL RESEARCH | en |
dc.subject | CLASSIFICATION | en |
dc.subject | DEEP LEARNING | en |
dc.subject | ELECTRORETINOGRAM | en |
dc.subject | ELECTRORETINOGRAPHY | en |
dc.subject | ERG | en |
dc.subject | WAVELET ANALYSIS | en |
dc.subject | ADULT | en |
dc.subject | CHILD | en |
dc.subject | COLOR VISION | en |
dc.subject | ELECTRORETINOGRAPHY | en |
dc.subject | HUMAN | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | PHYSIOLOGY | en |
dc.subject | PROCEDURES | en |
dc.subject | RETINA | en |
dc.subject | WAVELET ANALYSIS | en |
dc.subject | ADULT | en |
dc.subject | CHILD | en |
dc.subject | COLOR VISION | en |
dc.subject | ELECTRORETINOGRAPHY | en |
dc.subject | HUMANS | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | RETINA | en |
dc.subject | WAVELET ANALYSIS | en |
dc.title | Enhancing Electroretinogram Classification with Multi-Wavelet Analysis and Visual Transformer | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/s23218727 | - |
dc.identifier.scopus | 85176902341 | - |
local.contributor.employee | Kulyabin, M., Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany | en |
local.contributor.employee | Zhdanov, A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Dolganov, A., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Ronkin, M., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Borisov, V., Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Maier, A., Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany | en |
local.issue | 21 | - |
local.volume | 23 | - |
dc.identifier.wos | 001100427400001 | - |
local.contributor.department | Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany | en |
local.contributor.department | Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 48542935 | - |
local.identifier.eid | 2-s2.0-85176902341 | - |
local.identifier.wos | WOS:001100427400001 | - |
local.identifier.pmid | 37960427 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85176902341.pdf | 3,76 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons