Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130890
Title: Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger
Authors: Bashkirtseva, I.
Pavletsov, M.
Perevalova, T.
Ryashko, L.
Issue Date: 2023
Publisher: Multidisciplinary Digital Publishing Institute (MDPI)
Citation: Bashkirtseva, I, Pavletsov, M, Perevalova, T & Ryashko, L 2023, 'Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger', Mathematics, Том. 11, № 20, 4302. https://doi.org/10.3390/math11204302
Bashkirtseva, I., Pavletsov, M., Perevalova, T., & Ryashko, L. (2023). Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger. Mathematics, 11(20), [4302]. https://doi.org/10.3390/math11204302
Abstract: Motivated by the increasingly important role of mathematical modeling and computer-aided analysis in engineering applications, we consider the problem of the mathematical modeling and computer-aided analysis of complex stochastic processes in thermo-kinetics. We study a mathematical model of the dynamic interaction of reagent concentration and temperature in autocatalysis. For the deterministic variant of this model, mono- and bistability parameter zones as well as local and global bifurcations are revealed, and we show how random multiplicative disturbances can deform coexisting equilibrium regimes. In a study of noise-induced transitions, we apply direct numerical simulation and an analytical approach based on the stochastic sensitivity technique. Two variants of bistability with different scenarios of stochastic transformations are studied and compared. © 2023 by the authors.
Keywords: AUTOCATALYTIC TRIGGER
NOISE-INDUCED TRANSITIONS
STOCHASTIC SENSITIVITY
THERMO-KINETIC MODEL
URI: http://elar.urfu.ru/handle/10995/130890
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85175055196
WOS ID: 001095407200001
PURE ID: 47879496
ISSN: 2227-7390
DOI: 10.3390/math11204302
Sponsorship: Ministry of Education and Science of the Russian Federation, Minobrnauka
This research was funded by the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85175055196.pdf3,39 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons