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Abstract: Motivated by the increasingly important role of mathematical modeling and computer-
aided analysis in engineering applications, we consider the problem of the mathematical modeling
and computer-aided analysis of complex stochastic processes in thermo-kinetics. We study a mathe-
matical model of the dynamic interaction of reagent concentration and temperature in autocatalysis.
For the deterministic variant of this model, mono- and bistability parameter zones as well as local and
global bifurcations are revealed, and we show how random multiplicative disturbances can deform
coexisting equilibrium regimes. In a study of noise-induced transitions, we apply direct numerical
simulation and an analytical approach based on the stochastic sensitivity technique. Two variants of
bistability with different scenarios of stochastic transformations are studied and compared.
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1. Introduction

In modern branches of the natural sciences and engineering applications, mathematical
modeling and computer-aided analysis play an increasingly important role. In the wide
range of these studies, the complex dynamic regimes of thermo-kinetics have attracted
the attention of many researchers [1–3]. In experimental findings, a diversity of operation
modes, both steady-state and oscillatory, were revealed. Understanding of the internal
mechanisms of such regimes and their transformations can be achieved by thorough
analysis of adequate mathematical models (see, e.g., [3–6]). Due to the strong nonlinearity,
thermo-kinetic models are multistable and highly sensitive to parameter changes and
random disturbances [7]. Progress in the investigation of such nonlinear dynamic models
can be ensured by a combination of the modern methods of analytical mathematics [8],
bifurcation theory [9,10], and high-precision numerical simulation [11–15].

Nowadays, various mathematical models of the thermo-chemical processes are actively
studied (see [3] and bibliography therein). In a variety of thermo-chemical processes,
autocatalytic reactions are of particular interest [16–18]. It is known that heterogeneous
catalytic reactions can occur with significant thermal effects. Therefore, it is important
to study the dynamic properties of processes on the catalyst surface, taking into account
changes in its temperature. In this case, the combination of nonlinearity in the temperature
and kinetic feedbacks leads to a significant complication of the dynamic processes.

As is known, the random disturbances that are inevitably present in nonlinear systems
can cause unexpected phenomena such as noise-induced transitions [19,20], stochastic
bifurcations [21], noise-induced excitement [22], stochastic and coherence resonance [23],
etc. When studying these phenomena, time-consuming direct numerical simulation is
usually used. In stochastic systems, an exhaustive description of the dynamics of prob-
abilistic distributions is given by the Fokker–Planck Equation [24]. However, direct use
of this equation encounters serious mathematical difficulties even in two-dimensional
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cases, so asymptotics and approximations are helpful [25,26]. Among others, the stochastic
sensitivity function technique is a useful constructive tool for studying phenomena caused
by noise (see, e.g., [27–33]).

In this paper, as an initial deterministic skeleton, we consider the two-dimensional
thermo-kinetic model proposed in [16]. Its peculiarity is that the kinetic subsystem is an
autocatalytic trigger: for the same set of parameters the model exhibits a coexistence of
several equilibrium modes. This model was used as a basis for understanding the complex
dynamics of thermo-kinetic processes on the catalyst surface. A parametric description of
the dynamic modes of this deterministic model was initiated in [17,18].

The purpose of this paper is to study how random disturbances in this model can
deform deterministic dynamics and generate new operating modes in thermo-kinetics of
autocatalytic processes. The rest of the paper is structured as follows. In Section 2, we
study two variants of bistability in the deterministic system. Despite having a common
feature, namely the coexistence of two stable equilibria, these variants have significantly
different bifurcation scenarios. Such a difference manifests itself in the presence of random
disturbances. In Section 3, we study stochastic phenomena caused by noise-induced
transitions between equilibria. In this analysis, we use the methods of direct numerical
simulation of solutions of stochastic equations with the subsequent statistical processing
as well as the mathematical approach based on the stochastic sensitivity technique and
apparatus of confidence domains.

2. Deterministic Model

It is well known that many critical phenomena in thermo-chemical processes are
associated with multistability. The reason for this multistability is the specific interplay of
temperature and kinetic nonlinearities. The presence of coexisting attractors dramatically
complicates the behavior of the system under conditions of random disturbances.

In this paper, we will study these critical phenomena on the basis of a thermo-kinetic
model of an autocatalytic trigger on the catalyst surface, first proposed in [16]:

ẋ = k1(1− x)− x f (y)− k2x(1− x)2,

ẏ = βx f (y) + s(1− y).
(1)

Here, the variables x and y are dimensionless measures of concentration and tempera-

ture, respectively. The function f (y) = Deγ(1− 1
y ) describes the temperature dependence of

the reaction rate. Here, γ is the activation parameter and D is the Damköhler number. The
dimensionless parameters k1, k2, β, and s are all positive.

In this paper, following [3], we fix

β = 0.375, s = 2, k2 = 0.6.

We will describe two bifurcation scenarios that prevail in model (1) for two sets of fixed
parameters: k2 = 2.5, γ = 55 (case 1) and k2 = 1, γ = 75 (case 2). The coefficient D is
considered as a bifurcation parameter. These two scenarios correspond to the possible
coexistence of two stable equilibria, but differ, firstly, in the location of the equilibria on the
phase plane, and secondly, in the complexity of the observed bifurcations.

The equilibria of model (1) are solutions of the following transcendental equation:

βDxeγ
(

1− 1
y(x)

)
+ s(1− y(x)) = 0. (2)

Here, y(x) = 1 + β
s (k1 − k2x(1− x))(1− x). With the chosen parameter values, this

equation can have up to three solutions. Next, we analyze the existence and stability of the
equilibria of the model (1) for the selected cases with D being a bifurcation parameter. We
will call the equilibria Mi (i = 1, 2, 3), where i increases with increasing value of variable x.
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2.1. Case 1: k2 = 2.5, γ = 55

Figure 1 shows the bifurcation diagram and Lyapunov exponents of the equilibria of
the model (1) with a change in the parameter D. In the interval D ∈ (0, D1) (D1 = 0.03323),
there are two stable equilibria M1 (green) and M3 (blue), and one saddle equilibrium M2
(red dashed). At the bifurcation point D1 = 0.03323, a saddle-node bifurcation occurs,
which means that the two equilibria M2 and M3 collide and disappear. Furthermore,
for D > D1, only one stable equilibrium M1 exists. In Figure 1b, the Lyapunov exponents
show that both stable equilibria are nodes, i.e., both Lyapunov exponents for each equilibria
are negative. At the bifurcation point D1, the Lyapunov exponents for M2 and M3 are
equal, which corresponds to the occurrence of the saddle-node bifurcation.

0.3
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1

0 0.01 0.02 0.045

1

1.004

1.008

0 0.01 0.02 0.045

-2

-1.5

-1

-0.5

0
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(a) (b)

Figure 1. System (1) with k2 = 2.5, γ = 55: (a) coordinates, x (top) and y (bottom), of the equilibria
M1 (green), M2 (red dashed), and M3 (blue). Here, M1 and M3 are stable nodes and M2 is a saddle.
In (b), the Lyapunov exponents are shown by the corresponding colors.

In Figure 2, we show phase portraits of the model (1) for D = 0.02 (Figure 2a) and
D = 0.04 (Figure 2b). In Figure 2a, one can observe a coexistence of two stable nodes
M1 = (0.376486, 1.00154) (filled green circle) and M3 = (0.949131, 1.00457) (filled blue
circle). The stable manifold (dashed red line) of the saddle M2 = (0.6708, 1.00296) (empty
red circle) creates the boundary between the basins of attraction of the two stable equilibria
M1 and M3.

In this case, a bistable scenario occurs in model (1). Depending on the initial condition,
a solution can converge to one equilibrium state or the other. It should be mentioned that the
equilibrium regimes M1 and M3 have almost the same temperature, but the concentration
differs twice. Figure 2b exemplifies the monostable regime with only one equilibrium
M1 = (0.356612, 1.00318) (filled green circle). This means that all solutions converge to
only one state with a lower value of concentration.

0 0.5 1 1.5

0.8

1

1.2

0 0.5 1 1.5

0.8

1

1.2

(a) (b)

Figure 2. Phase portraits of the system (1) with k2 = 2.5, γ = 55 for: (a) D = 0.02 and (b) D = 0.04.
Here, M1 (filled green circle) and M3 (filled blue circle) are stable nodes, and M2 (empty red circle) is
a saddle. Here, the separatrix shown by the red dashed line is the stable manifold of the saddle M2.
Arrows show evolution over time.
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In the following section, we consider a more complex bifurcation scenario.

2.2. Case 2: k2 = 1, γ = 75

In this case, the dynamical behavior of model (1) differs from the previous case and
appears to be more complicated. There are also only up to three equilibria, but the stable
equilibria that exist reflect the dynamics not only for different values of concentration,
but also for different temperature levels. An additional complication is related to the
emerging new bifurcation scenario. For this case, all bifurcation values of the parameter D
are presented below:

D1 = 0.01176245 D2 = 0.01178143 D3 = 0.01211245 D4 = 0.01586245
D5 = 0.0243 D6 = 0.03262665 D7 = 0.033195 D8 = 0.0335.

Figure 3 shows the bifurcation diagram and Lyapunov exponents of the equilibria
of model (1) with k2 = 1, γ = 75 and changing parameter D. In the interval D ∈ (0, D1),
there is only one stable equilibrium M3 (blue). At the bifurcation point D1, a saddle-node
bifurcation occurs, which means that two equilibria M1 (green) and M2 (red) appear. Here,
the Lyapunov exponents presented in Figure 3c provide more information.
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Figure 3. System (1) with k2 = 1, γ = 75: (a) coordinates, x (top) and y (bottom), of the equilibria
M1 (green), M2 (red dashed), and M3 (blue). In (b–d), the Lyapunov exponents are shown by the
corresponding colors.

First, at D = D1, the equilibrium M1 is born as an unstable node: both Lyapunov
exponents are real and positive. At D = D2, the Lyapunov exponents for M1 become
complex and the real part stays positive up to D = D3, so M1 is an unstable focus. At
D = D3, the real part becomes negative and remains so until the Lyapunov exponents
become real again at D = D4, i.e., M1 is a stable focus (see Figure 3b). For D > D4,
Lyapunov exponents are real and negative, so M1 is a stable node. At the same time, the
Lyapunov exponents for the equilibrium M2 have different signs in the parameter interval
D1 < D < D8, so M2 is a saddle.

As for M3, this equilibrium is a stable node in the interval 0 < D < D5, where both
its Lyapunov exponents are real and negative (see Figure 3b). At D = D5, the Lyapunov
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exponents become complex and the real part stays negative up to D = D6, so M3 is a
stable focus. At D = D6, the real part becomes positive and remains so until the Lyapunov
exponents become real again at D = D7, i.e., M3 is an unstable focus (see Figure 3d). In the
interval D7 < D < D8, the Lyapunov exponents are both real and positive, so M3 is an
unstable node. At the bifurcation value D8, a saddle-node bifurcation occurs, which means
that the two equilibria M2 and M3 collide and disappear. Furthermore, for D > D8, only
one stable equilibrium M1 exists.

Thus, in this case, model (1) demonstrates bistable behavior in the interval D3 < D <
D6. Although in the intervals D1 < D < D3 and D6 < D < D8 there are three equilibria,
there is only attracting one.

In Figure 4, we show the phase portraits of model (1) for different parameter zones.
Figure 4a shows the dynamic regime for D = 0.008 with only one equilibrium
M3 = (0.984734, 1.00167) (filled blue circle); this is a stable node. All trajectories con-
verge to M3, which corresponds the attractive state with the higher concentration and
lower temperature. It is worth noting that there are different types of transient process at
play: one type of transient is formed by solutions converging immediately to equilibrium,
the other first makes an ascent at the temperature and then with lower concentration
converge to the equilibrium. This convergence behavior we observe while M3 exists.

In Figure 4b for D = 0.0119, a phase portrait with three equilibria is plotted. Here,
M1 = (0.066023, 1.09427) (empty green circle) is an unstable focus, M2 = (0.0931766, 1.08765)
(empty red circle) is a saddle, and M3 = (0.975423, 1.00265) (filled blue circle) is a stable
node. The stable manifold (dashed red line) of the saddle M2 creates a boundary between
the two types of transients mentioned above.

Figure 4c exemplifies a coexistence of two stable equilibria for D = 0.013: M1 =
(0.0463086, 1.09939) (stable focus, filled green circle) and M3 = (0.972488, 1.00296) (sta-
ble node, filled blue circle). The stable manifold (dashed red line) of the saddle M2 =
(0.128324, 0.128324) (empty red circle) is a separatrix between the basins of attraction of the
two stable equilibria M1 and M3. So, in this case, model (2) is bistable. Depending on the
initial condition, the solution can converge to one equilibrium state or the other: one with
a lower temperature and higher concentration, the other with a higher temperature and
lower concentration.

In Figure 4d for D = 0.02, a coexistence of two stable nodes, M1 = (0.0209389, 1.10638)
(filled green circle) and M3 = (0.948999, 1.00527) (filled blue circle), and the saddle M2 =
(0.246123, 1.05858) (empty red circle) is presented. The dynamical behavior is similar to
one shown in Figure 4c with the difference being in the asymptotic behavior of M1 (node
instead of focus).

Figure 4e shows another slightly different scenario for D = 0.03 of the coexis-
tence of two stable equilibria, M1 = (0.0122653, 1.10888) (filled green circle) and M3 =
(0.873089, 1.01164) (filled blue circle), and the saddle M2 = (0.420613, 1.03871) (empty red
circle). Here, M1 is a stable node while M3 is a stable focus.

In Figure 4f for D = 0.033, the equilibrium M1 = (0.0109274, 1.10927) (filled green
circle) is a stable node, M2 = (0.545091, 0.545091) (empty red circle) is a saddle, and M3 =
(0.766769, 1.01842) (empty blue circle) is an unstable focus. By the red dashed line, we
show the stable manifold of the saddle M2 that creates a boundary between two types of
the transient behavior.

Figure 4g shows the dynamic regime for D = 0.04 with only one equilibrium M1 =
(0.00871817, 1.10991) (filled green circle); this is a stable node. This means that all solutions
of the system (1) converge to only one state with lower value of concentration and with
higher temperatures.

To summarize, this thermo-kinetic model exhibits a diversity of complex dynamic
regimes even in the deterministic case. In the next section, we will consider additional
effects caused by random disturbances.
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Figure 4. Phase portraits of model (1) with k2 = 1, γ = 75 for: (a) D = 0.008, (b) D = 0.0119,
(c) D = 0.013, (d) D = 0.02, (e) D = 0.03, (f) D = 0.033, and (g) D = 0.04. The equilibria M1, M2,
and M3 are shown by green, red, and blue, respectively. Here, the separatrix shown by a red dashed
line is the stable manifold of the saddle M2. Arrows show evolution over time.

3. Stochastic Model

Let us consider a stochastic version of the thermo-kinetic model with multiplicative
random disturbances:

ẋ = k1(1− x)− x f (y)− k2x(1− x)2 + εxξ(t),

ẏ = βx f (y) + s(1− y).
(3)
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Here, ξ(t) is a scalar white Gaussian noise with parameters Eξ(t) = 0, Eξ(t)ξ(τ) =
δ(t− τ), and ε is the noise intensity. In stochastic simulation of random solutions of the
system (3), we use the Euler–Maruyama scheme with the time step 0.001.

3.1. Stochastic Effects in the Case 1 with k2 = 2.5, γ = 55

First, we consider the bistability parameter range 0 < D < D1 = 0.03323 where deter-
ministic system (1) has two stable equilibria (see Section 2.1). For D = 0.02, Figure 5a shows
the x- and y-coordinates of random solutions of system (3) starting at M1 (green) and M3
(blue) versus noise intensity. Here and further, we use the following colors designation: if the
trajectory starts at the equilibrium M1 (M3) then random states (Figures 5a and 6a), mean
values (Figures 5b and 6b), time series (Figures 7 and 8), and probability (Figures 9 and 10)
are plotted in green (blue). First, the dispersion of random states around both equilibria
increases. For ε ≈ 0.05, solutions starting at M3 (blue) begin to transit to M1. For ε > 0.1, a
reverse transition from the equilibrium M1 to the basin of M3 begins to be observed. The
results of the statistical analysis of these stochastic transformations are shown in Figure 5b
in terms of mean values mx, my versus noise intensity. For noise intensity ε < 0.04, two
mean values differ. With a further increase in ε, the mean values of random solutions
starting at M3 (blue) rapidly decrease and merge with the mean values of random solutions
starting at M1 (green). After such a merging, the mean values slowly increase.
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1

0 0.05 0.1 0.15 0.2

1.001

1.003
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Figure 5. Stochastic system (3) with k2 = 2.5, γ = 55, D = 0.02: (a) random states of solutions
starting at M1 (green) and M3 (blue); (b) corresponding mean values. Here, red dashed lines mark
coordinates of the equilibrium M2.
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Figure 6. Stochastic system (3) with k2 = 1, γ = 75, D = 0.015: (a) random states of solutions
starting at M1 (green) and M3 (blue); (b) corresponding mean values. Here, red dashed lines mark
coordinates of the equilibrium M2.
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Figure 7. Noise-induced transitions in system (3) with k2 = 2.5, γ = 55, D = 0.02 between equilibria
M1 (green circle) and M3 (blue circle): (a) no transition for ε = 0.03, (b) transition M3 → M1 for
ε = 0.08, (c) transitions M1 ↔ M3 for ε = 0.25. Here, red dashed lines mark the separatrices. In
top panels, we show equilibria and confidence ellipses. In bottom panels, we show time series of
solutions starting at M1/M3 in green/blue.
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Figure 8. Noise-induced transitions in stochastic system (3) with k2 = 1, γ = 75, D = 0.015: (a) no
transition for ε = 0.1, (b) transition from M1 (green circle) to M3 (blue circle) for ε = 0.4. Here, red
dashed lines mark the separatrices. In top panels, we show equilibria and confidence ellipses. In
bottom panels, we show time series of solutions starting at M1/M3 in green/blue.

In order to give a parametric description of the observed noise-induced transitions, we
will use the stochastic sensitivity function technique [27–31]. This technique was introduced
for constructive approximation of the probabilistic distribution of random states in the
neighborhood of the deterministic attractor. The stochastic sensitivity function technique
was first elaborated for continuous-time systems and now covers cases of such attractors
as equilibria, limit cycles, and tori [27,30,31,34]. Moreover, for discrete-time systems,
the theory of stochastic sensitivity was elaborated also for closed invariant curves [35]
and chaotic attractors [36]. This theory is effectively used in the stochastic analysis of
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nonlinear dynamic models in various fields of science (see, e.g., [33,37–39]), and also in
control problems [40,41].

0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

Figure 9. Probability P(ε) of noise-induced transitions in system (3) with k2 = 2.5, γ = 55 for different
values of the parameter D: M3 → M1 (blue) and M1 → M3 (green).

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Figure 10. Probability of noise-induced transitions M1 → M3 in stochastic system (3) with k2 = 1,
γ = 75.

Geometrically, the stochastic sensitivity function technique can be applied in the form
of confidence domains [29,32]. Such domains calculated by this technique allow one to get
a clear spatial description of the random states’ dispersion near the deterministic attractor.

For the stable equilibrium M(x̄, ȳ) of the two-dimensional stochastic system, a disper-
sion of random states can be approximated by a confidence ellipse

z2
1

µ1
+

z2
2

µ2
= −2ε2 ln(1−P),

where parameters µ1 > µ2 are eigenvalues of the stochastic sensitivity matrix W, variables
z1 and z2 are coordinates of this ellipse in the basis of orthonormal eigenvectors u1, u2 of the
matrix W, the parameter ε is the noise intensity, and P stands for the fiducial probability.

So, when constructing the confidence ellipse, one has to calculate the stochastic sensi-
tivity matrix W. This matrix is a unique solution of the algebraic Equation [28]

JW + W J> + G = 0, (4)

where J is a Jacobi matrix of the original deterministic system at the equilibrium point
M(x̄, ȳ) and the matrix G reflects an influence of the random disturbances. For the sys-
tem (3), we have

J(x, y) =


−k1 − Deγ(1− 1

y ) − k2(1− 4x + 3x2) −γD
x
y2 eγ(1− 1

y )

βDeγ(1− 1
y ) βγD

x
y2 eγ(1− 1

y ) − s

,

G(x) = diag[x2, 0].
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The stochastic sensitivity matrix W allows one to approximate the covariance matrix of
solutions (xε(t), yε(t)) of the stochastic system near the equilibrium M(x̄, ȳ):

cov(xε(t), yε(t)) ≈ ε2W.

Spatial peculiarities of the dispersion of random solutions (xε(t), yε(t)) near the equilibrium
M(x̄, ȳ) are reflected by eigenvalues and eigenvectors of the matrix W. Indeed, eigenvalues
µ1, µ2 of the stochastic sensitivity matrix W define the eccentricity and size of the confidence
ellipse in directions of eigenvectors u1, u2. Note that the extent of the ellipse is proportional
to the noise intensity ε.

So, the spectral characteristics of the matrix W make it possible to obtain an approxi-
mation of the probability density near the equilibrium in the Gaussian form:

ρ(z1, z2) = Ke
−

z2
1

2µ1ε2 −
z2

2
2µ2ε2

.

Consider how this stochastic sensitivity technique can be used in analysis of the noise-
induced transitions in system (3). In Figure 11a, eigenvalues µ1 (solid) and µ2 (dashed)
(µ1 > µ2 > 0) of the stochastic sensitivity matrix of equilibria M1 (green) and M3 (blue) are
plotted versus parameter D. Note that both eigenvalues for M3 are bigger then the eigen-
values for M1. This means that the dispersion of stochastic states around the equilibrium
M3 would be wider. The largest eigenvalue µ1 of the stochastic sensitivity matrix for the
equilibrium M3 increases sharply when parameter D approaches the bifurcation value D1,
while the value of µ1 for the equilibrium M1 slightly decreases with an increase in parame-
ter D. Figure 11b shows an example of the confidence ellipse around the equilibrium M3
for D = 0.02 and noise intensity ε = 0.01 constructed using the stochastic sensitivity matrix.
Note that dispersion of random states (grey) is well approximated by this ellipse.
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1
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Figure 11. Stochastic sensitivity of equilibria M1 and M3 in system (3) with k2 = 2.5, γ = 55:
(a) eigenvalues µ1 (solid) and µ2 (dashed) (µ1 > µ2 > 0) of the stochastic sensitivity matrix W of
equilibria M1 (green) and M3 (blue), (b) confidence ellipse (black) and stochastic states (grey) for the
equilibrium M3 (blue) with D = 0.02 and noise intensity ε = 0.01.

The relative position of the confidence ellipses and the boundary of the basin of
attraction of a deterministic attractor makes it possible to describe noise-induced transitions.
Figure 7 demonstrates an application of this method. For the noise intensity ε = 0.03 in
Figure 7a (top), confidence ellipses (black) for both equilibria lie far from the separatrix
(red dashed line) between the basins of attraction of the equilibria M1 and M3. This means
that random states are localized near M1 or M3, and transitions do not occur. This behavior
is shown by the time series in Figure 7a (bottom).

In Figure 7b (top), for ε = 0.08, one of the confidence ellipses, related to equilibrium
M3, crosses the boundary of the basins of attraction. This indicates the occurrence of a noise-
induced transition from M3 to M1, which is shown in the time series below. The situation
where both ellipses cross the separatrix is presented for ε = 0.25 in Figure 7c (top). In this
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case, we observe noise-induced two-way transitions between two equilibria M1 ↔ M3,
which are shown in the time series in Figure 7c (bottom).

In the case under consideration, the stochastic system (3) demonstrates two-stage
noise-induced transitions between two modes corresponding to states with different value
of concentration x and almost equal values of temperature y. The first stage is the one-way
transition from a larger value of the concentration to a smaller value (M3 → M1), and the
second stage (stochastic trigger) is intermittent behavior between these two concentration
values (M1 ↔ M3).

The results of the statistical analysis in terms of the probability P of transitions are
given in Figure 9 versus noise intensity ε for various values of the parameter D (the color
matches the equilibrium from which we observe the transition). Here, we use the x-
coordinate of the equilibrium M2 as a threshold value. First, transitions from equilibria M1
occur for higher levels of noise intensity ε. Second, for both equilibria, the following remark
holds: the larger the value of D, the higher the required noise intensity for transitions.

3.2. Stochastic Effects in the Case 2 with k2 = 1, γ = 75

Now, we consider stochastic system (3) with k2 = 1, γ = 75 in the bistable parameter
region D3 < D < D6 where the initial deterministic model exhibits a coexistence of two
stable equilibria M1 and M3 (see Figure 3a). Figure 6a shows the x- and y-coordinates of the
random states of the stochastic solutions starting at M1 (green) and M3 (blue) versus noise
intensity for D = 0.015. First, as the noise increases, the dispersion of random states around
both equilibria increases as well. For noise intensity ε ≈ 0.15, solutions starting at M1
(green) demonstrate transitions to M3. In Figure 6b, these transitions are shown in terms of
the mean values mx, my of the stochastic states. For noise intensity ε < 0.15, the two mean
values differ, but with further increases in ε, the mean values of the random states of the
stochastic solutions starting at M1 (green) rapidly increase and merge with the mean values
for M3 (blue). After this merging, both mean values slowly decrease. It is worth noting
that in this case, only one-way noise-induced transitions M1 → M3 are observed.

As in the previous case, when studying the noise-induced transitions, we will use
the stochastic sensitivity function and method of confidence domains. Eigenvalues of
the stochastic sensitivity matrix for equilibria M1 (green) and M3 (blue) are presented in
Figure 12. For M3, the largest eigenvalue is bigger than the eigenvalues for M1. This is
almost a constant for most of the interval 0 < D < D6 and only increases for D > 0.032.
Eigenvalues for the equilibrium M1 decrease as the parameter D moves to the right from D3.

0 0.025

10
-10

10
-5

10
2

Figure 12. Eigenvalues µ1 (solid) and µ2 (dashed) (µ1 > µ2 > 0) of the stochastic sensitivity matrix
of equilibria M1 (green) and M3 (blue) in stochastic system (3) with k2 = 1, γ = 75.

Despite the fact that the sensitivity of the equilibrium M3 is higher than sensitivity
of the equilibrium M1, and the spread of random states is larger around the equilibrium
M3, no transitions from M3 to M1 are detected. On the contrary, the transition from M1 to
M3 occurs (see Figure 6). This fact can be explained by the following: the equilibrium M1
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is much closer to the separatrix (red dashed line) than the equilibrium M3 (see Figure 8).
In the top panels of Figure 8, we show confidence ellipses (black curves) around both
equilibria for two values of the noise intensity. For ε = 0.1 (Figure 8a), both confidence
ellipses do not intersect the separatrix. This means that random states are localized near
equilibria M1 or M3, and transitions do not occur. This behavior is shown by the time
series in Figure 8a, bottom. For ε = 0.4 (Figure 8b), one of the confidence ellipses, related
to the equilibrium M1, crosses the boundary of the basins of attraction. This indicates the
occurrence of a noise-induced transition from M1 to M3. This transition is shown in the
time series below.

So, in case 2, in contrast to case 1 described in 3.1, stochastic system (3) demonstrates
only one-stage noise-induced transitions, namely from the mode with a lower value of
concentration x and a larger temperature y to the mode with a larger value of concentration
x and a smaller temperature y (M1 → M3).

Details of the statistical analysis of these stochastic transformations are shown in
Figure 10, where the probability P of transitions M1 → M3 is plotted versus noise intensity
ε for various values of the parameter D. Here, as before, we use the x-coordinate of the
equilibrium M2 as a threshold value. The larger the value of D, the higher the required
noise intensity for transitions.

4. Conclusions

This paper is devoted to the problem of the mathematical modeling and computer sim-
ulation of complex nonlinear processes in the thermo-kinetics of autocatalysis. In our study,
we considered a mathematical model of the dynamic interaction of reagent concentration
and temperature. Parametric zones of bistability with the coexistence of two equilibrium
regimes of thermo-kinetics were investigated. It was shown how random disturbances
can deform deterministic dynamic regimes. When studying these noise-induced trans-
formations, we applied the methods of direct numerical simulation with the subsequent
statistical processing as well as the analytical stochastic sensitivity technique and apparatus
of confidence domains. Two variants of bistability with different scenarios of stochastic
transformations are studied and compared. The main result of this paper is a detailed
analysis of noise-induced shifts in the probabilistic distributions of random states and
probability of transitions from one equilibrium mode to another. For understanding un-
derlying mechanisms of such transition, a key role of the mutual arrangement of basins of
attractors, separatrices, and confidence ellipses is demonstrated. It is worth noting that this
approach can be applied to the analysis of more complex stochastic models in various fields
of science. The results presented in the paper shed light on the probabilistic mechanisms of
the generation of complex oscillatory modes that appear in autocatalysis.
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