Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130890
Название: | Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger |
Авторы: | Bashkirtseva, I. Pavletsov, M. Perevalova, T. Ryashko, L. |
Дата публикации: | 2023 |
Издатель: | Multidisciplinary Digital Publishing Institute (MDPI) |
Библиографическое описание: | Bashkirtseva, I, Pavletsov, M, Perevalova, T & Ryashko, L 2023, 'Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger', Mathematics, Том. 11, № 20, 4302. https://doi.org/10.3390/math11204302 Bashkirtseva, I., Pavletsov, M., Perevalova, T., & Ryashko, L. (2023). Analysis of Noise-Induced Transitions in a Thermo-Kinetic Model of the Autocatalytic Trigger. Mathematics, 11(20), [4302]. https://doi.org/10.3390/math11204302 |
Аннотация: | Motivated by the increasingly important role of mathematical modeling and computer-aided analysis in engineering applications, we consider the problem of the mathematical modeling and computer-aided analysis of complex stochastic processes in thermo-kinetics. We study a mathematical model of the dynamic interaction of reagent concentration and temperature in autocatalysis. For the deterministic variant of this model, mono- and bistability parameter zones as well as local and global bifurcations are revealed, and we show how random multiplicative disturbances can deform coexisting equilibrium regimes. In a study of noise-induced transitions, we apply direct numerical simulation and an analytical approach based on the stochastic sensitivity technique. Two variants of bistability with different scenarios of stochastic transformations are studied and compared. © 2023 by the authors. |
Ключевые слова: | AUTOCATALYTIC TRIGGER NOISE-INDUCED TRANSITIONS STOCHASTIC SENSITIVITY THERMO-KINETIC MODEL |
URI: | http://elar.urfu.ru/handle/10995/130890 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85175055196 |
Идентификатор WOS: | 001095407200001 |
Идентификатор PURE: | 47879496 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math11204302 |
Сведения о поддержке: | Ministry of Education and Science of the Russian Federation, Minobrnauka This research was funded by the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85175055196.pdf | 3,39 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons