Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130820
Название: | Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows |
Авторы: | Ershkov, S. Burmasheva, N. Leshchenko, D. D. Prosviryakov, E. Y. |
Дата публикации: | 2023 |
Издатель: | Multidisciplinary Digital Publishing Institute (MDPI) |
Библиографическое описание: | Ershkov, S, Burmasheva, N, Leshchenko, D & Prosviryakov, E 2023, 'Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows', Symmetry, Том. 15, № 9, 1730. https://doi.org/10.3390/sym15091730 Ershkov, S., Burmasheva, N., Leshchenko, D., & Prosviryakov, E. (2023). Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry, 15(9), [1730]. https://doi.org/10.3390/sym15091730 |
Аннотация: | We present a new exact solution of the thermal diffusion equations for steady-state shear flows of a binary fluid. Shear fluid flows are used in modeling and simulating large-scale currents of the world ocean, motions in thin layers of fluid, fluid flows in processes, and apparatuses of chemical technology. To describe the steady shear flows of an incompressible fluid, the system of Navier–Stokes equations in the Boussinesq approximation is redefined, so the construction of exact and numerical solutions to the equations of hydrodynamics is a very difficult and urgent task. A non-trivial exact solution is constructed in the Lin-Sidorov-Aristov class. For this class of exact solutions, the hydrodynamic fields (velocity field, pressure field, temperature field, and solute concentration field) were considered as linear forms in the x and y coordinates. The coefficients of linear forms depend on the third coordinate z. Thus, when considering a shear flow, the two-dimensional velocity field depends on three coordinates. It is worth noting that the solvability condition given in the article imposes a condition (relation) only between the velocity gradients. A theorem on the uniqueness of the exact solution in the Lin–Sidorov–Aristov class is formulated. The remaining coefficients of linear forms for hydrodynamic fields have functional arbitrariness. To illustrate the exact solution of the overdetermined system of Oberbeck–Boussinesq equations, a boundary value problem was solved to describe the complex convection of a vertical swirling fluid without its preliminary rotation. It was shown that the velocity field is highly stratified. Complex countercurrents are recorded in the fluid. © 2023 by the authors. |
Ключевые слова: | CONVECTION COUNTERFLOW DIFFUSION DUFOUR EFFECT EXACT SOLUTION OVERDETERMINED SYSTEM SORET EFFECT THERMAL DIFFUSION |
URI: | http://elar.urfu.ru/handle/10995/130820 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85172759221 |
Идентификатор WOS: | 001074145300001 |
Идентификатор PURE: | 46004981 |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym15091730 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85172759221.pdf | 2,25 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons