Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130820
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorErshkov, S.en
dc.contributor.authorBurmasheva, N.en
dc.contributor.authorLeshchenko, D. D.en
dc.contributor.authorProsviryakov, E. Y.en
dc.date.accessioned2024-04-05T16:33:32Z-
dc.date.available2024-04-05T16:33:32Z-
dc.date.issued2023-
dc.identifier.citationErshkov, S, Burmasheva, N, Leshchenko, D & Prosviryakov, E 2023, 'Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows', Symmetry, Том. 15, № 9, 1730. https://doi.org/10.3390/sym15091730harvard_pure
dc.identifier.citationErshkov, S., Burmasheva, N., Leshchenko, D., & Prosviryakov, E. (2023). Exact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flows. Symmetry, 15(9), [1730]. https://doi.org/10.3390/sym15091730apa_pure
dc.identifier.issn2073-8994-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85172759221&doi=10.3390%2fsym15091730&partnerID=40&md5=ca392168ae974dcbfde0491c93ed73581
dc.identifier.otherhttps://www.mdpi.com/2073-8994/15/9/1730/pdf?version=1694181123pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130820-
dc.description.abstractWe present a new exact solution of the thermal diffusion equations for steady-state shear flows of a binary fluid. Shear fluid flows are used in modeling and simulating large-scale currents of the world ocean, motions in thin layers of fluid, fluid flows in processes, and apparatuses of chemical technology. To describe the steady shear flows of an incompressible fluid, the system of Navier–Stokes equations in the Boussinesq approximation is redefined, so the construction of exact and numerical solutions to the equations of hydrodynamics is a very difficult and urgent task. A non-trivial exact solution is constructed in the Lin-Sidorov-Aristov class. For this class of exact solutions, the hydrodynamic fields (velocity field, pressure field, temperature field, and solute concentration field) were considered as linear forms in the x and y coordinates. The coefficients of linear forms depend on the third coordinate z. Thus, when considering a shear flow, the two-dimensional velocity field depends on three coordinates. It is worth noting that the solvability condition given in the article imposes a condition (relation) only between the velocity gradients. A theorem on the uniqueness of the exact solution in the Lin–Sidorov–Aristov class is formulated. The remaining coefficients of linear forms for hydrodynamic fields have functional arbitrariness. To illustrate the exact solution of the overdetermined system of Oberbeck–Boussinesq equations, a boundary value problem was solved to describe the complex convection of a vertical swirling fluid without its preliminary rotation. It was shown that the velocity field is highly stratified. Complex countercurrents are recorded in the fluid. © 2023 by the authors.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceSymmetry2
dc.sourceSymmetryen
dc.subjectCONVECTIONen
dc.subjectCOUNTERFLOWen
dc.subjectDIFFUSIONen
dc.subjectDUFOUR EFFECTen
dc.subjectEXACT SOLUTIONen
dc.subjectOVERDETERMINED SYSTEMen
dc.subjectSORET EFFECTen
dc.subjectTHERMAL DIFFUSIONen
dc.titleExact Solutions of the Oberbeck–Boussinesq Equations for the Description of Shear Thermal Diffusion of Newtonian Fluid Flowsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/sym15091730-
dc.identifier.scopus85172759221-
local.contributor.employeeErshkov, S., Department of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federationen
local.contributor.employeeBurmasheva, N., Sector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science of Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St, Ekaterinburg, 620049, Russian Federation, Academic Department of Information Technologies and Control Systems, Ural Federal University, 19 Mira St, Ekaterinburg, 620049, Russian Federationen
local.contributor.employeeLeshchenko, D.D., Department of Theoretical Mechanics, Odessa State Academy of Civil Engineering and Architecture, 4 Didrikhson St, Odessa, 65029, Ukraineen
local.contributor.employeeProsviryakov, E.Y., Sector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science of Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St, Ekaterinburg, 620049, Russian Federation, Academic Department of Information Technologies and Control Systems, Ural Federal University, 19 Mira St, Ekaterinburg, 620049, Russian Federationen
local.issue9-
local.volume15-
dc.identifier.wos001074145300001-
local.contributor.departmentDepartment of Scientific Researches, Plekhanov Russian University of Economics, Scopus Number 60030998, 36 Stremyanny Lane, Moscow, 117997, Russian Federationen
local.contributor.departmentSector of Nonlinear Vortex Hydrodynamics, Institute of Engineering Science of Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St, Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentAcademic Department of Information Technologies and Control Systems, Ural Federal University, 19 Mira St, Ekaterinburg, 620049, Russian Federationen
local.contributor.departmentDepartment of Theoretical Mechanics, Odessa State Academy of Civil Engineering and Architecture, 4 Didrikhson St, Odessa, 65029, Ukraineen
local.identifier.pure46004981-
local.description.order1730-
local.identifier.eid2-s2.0-85172759221-
local.identifier.wosWOS:001074145300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85172759221.pdf2,25 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons