Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130643
Title: High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates
Authors: Hendy, A. S.
De, Staelen, R. H.
Aldraiweesh, A. A.
Zaky, M. A.
Issue Date: 2023
Publisher: American Institute of Mathematical Sciences
Citation: Hendy, A, De Staelen, R, Aldraiweesh, A & Zaky, M 2023, 'High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates', Aims mathematics, Том. 8, № 10, стр. 22766-22788. https://doi.org/10.3934/math.20231160
Hendy, A., De Staelen, R., Aldraiweesh, A., & Zaky, M. (2023). High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. Aims mathematics, 8(10), 22766-22788. https://doi.org/10.3934/math.20231160
Abstract: A coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results. © 2023 the Author(s).
Keywords: CONVERGENCE ANALYSIS
GALERKIN-LEGENDRE SPECTRAL METHOD
L2-1Σ SCHEME
TIME-SPACE FRACTIONAL COUPLED GROSS¢PITAEVSKII EQUATION
URI: http://elar.urfu.ru/handle/10995/130643
Access: info:eu-repo/semantics/openAccess
cc-by
License text: https://creativecommons.org/licenses/by/4.0/
SCOPUS ID: 85164913180
WOS ID: 001037070200006
PURE ID: 41995472
ISSN: 2473-6988
DOI: 10.3934/math.20231160
Sponsorship: King Saud University, KSU
M. A. Zaky and A. Aldraiweesh extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85164913180.pdf1,19 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons