Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130643
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHendy, A. S.en
dc.contributor.authorDe, Staelen, R. H.en
dc.contributor.authorAldraiweesh, A. A.en
dc.contributor.authorZaky, M. A.en
dc.date.accessioned2024-04-05T16:28:18Z-
dc.date.available2024-04-05T16:28:18Z-
dc.date.issued2023-
dc.identifier.citationHendy, A, De Staelen, R, Aldraiweesh, A & Zaky, M 2023, 'High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates', Aims mathematics, Том. 8, № 10, стр. 22766-22788. https://doi.org/10.3934/math.20231160harvard_pure
dc.identifier.citationHendy, A., De Staelen, R., Aldraiweesh, A., & Zaky, M. (2023). High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. Aims mathematics, 8(10), 22766-22788. https://doi.org/10.3934/math.20231160apa_pure
dc.identifier.issn2473-6988-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85164913180&doi=10.3934%2fmath.20231160&partnerID=40&md5=ef8358555cc30e90979baf215fa5a5131
dc.identifier.otherhttps://doi.org/10.3934/math.20231160pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130643-
dc.description.abstractA coupled system of fractional order Gross-Pitaevskii equations is under consideration in which the time-fractional derivative is given in Caputo sense and the spatial fractional order derivative is of Riesz type. This kind of model may shed light on some time-evolution properties of the rotating two-component Bose¢ Einstein condensates. An unconditional convergent high-order scheme is proposed based on L2-1σ finite difference approximation in the time direction and Galerkin Legendre spectral approximation in the space direction. This combined scheme is designed in an easy algorithmic style. Based on ideas of discrete fractional Grönwall inequalities, we can prove the convergence theory of the scheme. Accordingly, a second order of convergence and a spectral convergence order in time and space, respectively, without any constraints on temporal meshes and the specified degree of Legendre polynomials N. Some numerical experiments are proposed to support the theoretical results. © 2023 the Author(s).en
dc.description.sponsorshipKing Saud University, KSUen
dc.description.sponsorshipM. A. Zaky and A. Aldraiweesh extend their appreciation to the Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Mathematical Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceAIMS Mathematics2
dc.sourceAIMS Mathematicsen
dc.subjectCONVERGENCE ANALYSISen
dc.subjectGALERKIN-LEGENDRE SPECTRAL METHODen
dc.subjectL2-1Σ SCHEMEen
dc.subjectTIME-SPACE FRACTIONAL COUPLED GROSS¢PITAEVSKII EQUATIONen
dc.titleHigh order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensatesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3934/math.20231160-
dc.identifier.scopus85164913180-
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.employeeDe Staelen, R.H., Ghent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgium, Research Department, Ghent University, Sint-Pietersnieuwstraat 25, Ghent, B-9000, Belgiumen
local.contributor.employeeAldraiweesh, A.A., Educational Technology Department, College of Education, King Saud University, Riyadh, Saudi Arabiaen
local.contributor.employeeZaky, M.A., Educational Technology Department, College of Education, King Saud University, Riyadh, Saudi Arabia, Department of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypten
local.description.firstpage22766-
local.description.lastpage22788-
local.issue10-
local.volume8-
dc.identifier.wos001037070200006-
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.departmentGhent University Hospital, Corneel Heymanslaan 10, Ghent, B-9000, Belgiumen
local.contributor.departmentResearch Department, Ghent University, Sint-Pietersnieuwstraat 25, Ghent, B-9000, Belgiumen
local.contributor.departmentEducational Technology Department, College of Education, King Saud University, Riyadh, Saudi Arabiaen
local.contributor.departmentDepartment of Applied Mathematics, National Research Centre, Dokki, Cairo, 12622, Egypten
local.identifier.pure41995472-
local.identifier.eid2-s2.0-85164913180-
local.identifier.wosWOS:001037070200006-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85164913180.pdf1,19 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons