Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130611
Title: Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse
Authors: Bashkirtseva, I.
Pisarchik, A. N.
Ryashko, L.
Issue Date: 2023
Publisher: Elsevier B.V.
Citation: Bashkirtseva, I, Pisarchik, AN & Ryashko, L 2023, 'Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse', Communications in Nonlinear Science and Numerical Simulation, Том. 125, 107383. https://doi.org/10.1016/j.cnsns.2023.107383
Bashkirtseva, I., Pisarchik, A. N., & Ryashko, L. (2023). Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse. Communications in Nonlinear Science and Numerical Simulation, 125, [107383]. https://doi.org/10.1016/j.cnsns.2023.107383
Abstract: We study complex dynamics of two Rulkov neurons unidirectionally connected via a chemical synapse with respect to three control parameters: (i) a parameter responsible for the type of dynamical behavior of a solitary neuron, (ii) coupling strength, and (iii) noise intensity. The coupled system exhibits various scenarios on the route from a stable equilibrium to chaos with respect to the coupling strength. We observe a variety of dynamical regimes, including mono-, bi- and tri-stability, order-chaos transitions and vice versa, as well as the coexistence of in-phase and anti-phase synchronization. We also study transitions between in-phase and out-of-phase synchronization with statistics on the duration of synchronization intervals and transitions from order to chaos. In addition to numerical simulations, we demonstrate the effectiveness of the analytical confidence ellipses method based on stochastic sensitivity approach. © 2023 The Author(s)
Keywords: CHAOS
CHEMICAL SYNAPSE
MAP-BASED NEURON MODELS
NEURONAL DYNAMICS
NOISE-INDUCED EFFECTS
STOCHASTIC SENSITIVITY
SYNCHRONIZATION
DYNAMICS
NEURONS
NUMERICAL METHODS
STOCHASTIC MODELS
STOCHASTIC SYSTEMS
CHEMICAL SYNAPSE
COUPLING STRENGTHS
IN-PHASE
MAP-BASED NEURON MODEL
MULTISTABILITY
NEURON MODELING
NEURONAL DYNAMICS
NOISE-INDUCED EFFECT
STOCHASTIC SENSITIVITY
STOCHASTICS
SYNCHRONIZATION
URI: http://elar.urfu.ru/handle/10995/130611
Access: info:eu-repo/semantics/openAccess
cc-by-nc-nd
License text: https://creativecommons.org/licenses/by-nc-nd/4.0/
SCOPUS ID: 85163986624
WOS ID: 001029016100001
PURE ID: 41586122
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2023.107383
Sponsorship: Russian Science Foundation, RSF: 21-11-00062
The work was supported by the Russian Science Foundation (project No. 21-11-00062).
RSCF project card: 21-11-00062
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85163986624.pdf2,5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons