Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130611
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Bashkirtseva, I. | en |
dc.contributor.author | Pisarchik, A. N. | en |
dc.contributor.author | Ryashko, L. | en |
dc.date.accessioned | 2024-04-05T16:27:17Z | - |
dc.date.available | 2024-04-05T16:27:17Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Bashkirtseva, I, Pisarchik, AN & Ryashko, L 2023, 'Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse', Communications in Nonlinear Science and Numerical Simulation, Том. 125, 107383. https://doi.org/10.1016/j.cnsns.2023.107383 | harvard_pure |
dc.identifier.citation | Bashkirtseva, I., Pisarchik, A. N., & Ryashko, L. (2023). Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse. Communications in Nonlinear Science and Numerical Simulation, 125, [107383]. https://doi.org/10.1016/j.cnsns.2023.107383 | apa_pure |
dc.identifier.issn | 1007-5704 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Hybrid Gold | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85163986624&doi=10.1016%2fj.cnsns.2023.107383&partnerID=40&md5=124dd290ecbbb134d6e714232e02c744 | 1 |
dc.identifier.other | https://doi.org/10.1016/j.cnsns.2023.107383 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130611 | - |
dc.description.abstract | We study complex dynamics of two Rulkov neurons unidirectionally connected via a chemical synapse with respect to three control parameters: (i) a parameter responsible for the type of dynamical behavior of a solitary neuron, (ii) coupling strength, and (iii) noise intensity. The coupled system exhibits various scenarios on the route from a stable equilibrium to chaos with respect to the coupling strength. We observe a variety of dynamical regimes, including mono-, bi- and tri-stability, order-chaos transitions and vice versa, as well as the coexistence of in-phase and anti-phase synchronization. We also study transitions between in-phase and out-of-phase synchronization with statistics on the duration of synchronization intervals and transitions from order to chaos. In addition to numerical simulations, we demonstrate the effectiveness of the analytical confidence ellipses method based on stochastic sensitivity approach. © 2023 The Author(s) | en |
dc.description.sponsorship | Russian Science Foundation, RSF: 21-11-00062 | en |
dc.description.sponsorship | The work was supported by the Russian Science Foundation (project No. 21-11-00062). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.relation | info:eu-repo/grantAgreement/RSF//21-11-00062 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by-nc-nd | other |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | unpaywall |
dc.source | Communications in Nonlinear Science and Numerical Simulation | 2 |
dc.source | Communications in Nonlinear Science and Numerical Simulation | en |
dc.subject | CHAOS | en |
dc.subject | CHEMICAL SYNAPSE | en |
dc.subject | MAP-BASED NEURON MODELS | en |
dc.subject | NEURONAL DYNAMICS | en |
dc.subject | NOISE-INDUCED EFFECTS | en |
dc.subject | STOCHASTIC SENSITIVITY | en |
dc.subject | SYNCHRONIZATION | en |
dc.subject | DYNAMICS | en |
dc.subject | NEURONS | en |
dc.subject | NUMERICAL METHODS | en |
dc.subject | STOCHASTIC MODELS | en |
dc.subject | STOCHASTIC SYSTEMS | en |
dc.subject | CHEMICAL SYNAPSE | en |
dc.subject | COUPLING STRENGTHS | en |
dc.subject | IN-PHASE | en |
dc.subject | MAP-BASED NEURON MODEL | en |
dc.subject | MULTISTABILITY | en |
dc.subject | NEURON MODELING | en |
dc.subject | NEURONAL DYNAMICS | en |
dc.subject | NOISE-INDUCED EFFECT | en |
dc.subject | STOCHASTIC SENSITIVITY | en |
dc.subject | STOCHASTICS | en |
dc.subject | SYNCHRONIZATION | en |
dc.title | Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.cnsns.2023.107383 | - |
dc.identifier.scopus | 85163986624 | - |
local.contributor.employee | Bashkirtseva, I., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina, 51, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.employee | Pisarchik, A.N., Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain | en |
local.contributor.employee | Ryashko, L., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina, 51, Ekaterinburg, 620000, Russian Federation | en |
local.volume | 125 | - |
dc.identifier.wos | 001029016100001 | - |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina, 51, Ekaterinburg, 620000, Russian Federation | en |
local.contributor.department | Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain | en |
local.identifier.pure | 41586122 | - |
local.description.order | 107383 | - |
local.identifier.eid | 2-s2.0-85163986624 | - |
local.fund.rsf | 21-11-00062 | - |
local.identifier.wos | WOS:001029016100001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85163986624.pdf | 2,5 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons