Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130611
Название: | Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse |
Авторы: | Bashkirtseva, I. Pisarchik, A. N. Ryashko, L. |
Дата публикации: | 2023 |
Издатель: | Elsevier B.V. |
Библиографическое описание: | Bashkirtseva, I, Pisarchik, AN & Ryashko, L 2023, 'Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse', Communications in Nonlinear Science and Numerical Simulation, Том. 125, 107383. https://doi.org/10.1016/j.cnsns.2023.107383 Bashkirtseva, I., Pisarchik, A. N., & Ryashko, L. (2023). Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse. Communications in Nonlinear Science and Numerical Simulation, 125, [107383]. https://doi.org/10.1016/j.cnsns.2023.107383 |
Аннотация: | We study complex dynamics of two Rulkov neurons unidirectionally connected via a chemical synapse with respect to three control parameters: (i) a parameter responsible for the type of dynamical behavior of a solitary neuron, (ii) coupling strength, and (iii) noise intensity. The coupled system exhibits various scenarios on the route from a stable equilibrium to chaos with respect to the coupling strength. We observe a variety of dynamical regimes, including mono-, bi- and tri-stability, order-chaos transitions and vice versa, as well as the coexistence of in-phase and anti-phase synchronization. We also study transitions between in-phase and out-of-phase synchronization with statistics on the duration of synchronization intervals and transitions from order to chaos. In addition to numerical simulations, we demonstrate the effectiveness of the analytical confidence ellipses method based on stochastic sensitivity approach. © 2023 The Author(s) |
Ключевые слова: | CHAOS CHEMICAL SYNAPSE MAP-BASED NEURON MODELS NEURONAL DYNAMICS NOISE-INDUCED EFFECTS STOCHASTIC SENSITIVITY SYNCHRONIZATION DYNAMICS NEURONS NUMERICAL METHODS STOCHASTIC MODELS STOCHASTIC SYSTEMS CHEMICAL SYNAPSE COUPLING STRENGTHS IN-PHASE MAP-BASED NEURON MODEL MULTISTABILITY NEURON MODELING NEURONAL DYNAMICS NOISE-INDUCED EFFECT STOCHASTIC SENSITIVITY STOCHASTICS SYNCHRONIZATION |
URI: | http://elar.urfu.ru/handle/10995/130611 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by-nc-nd |
Текст лицензии: | https://creativecommons.org/licenses/by-nc-nd/4.0/ |
Идентификатор SCOPUS: | 85163986624 |
Идентификатор WOS: | 001029016100001 |
Идентификатор PURE: | 41586122 |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2023.107383 |
Сведения о поддержке: | Russian Science Foundation, RSF: 21-11-00062 The work was supported by the Russian Science Foundation (project No. 21-11-00062). |
Карточка проекта РНФ: | 21-11-00062 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85163986624.pdf | 2,5 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons