Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130611
Название: Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse
Авторы: Bashkirtseva, I.
Pisarchik, A. N.
Ryashko, L.
Дата публикации: 2023
Издатель: Elsevier B.V.
Библиографическое описание: Bashkirtseva, I, Pisarchik, AN & Ryashko, L 2023, 'Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse', Communications in Nonlinear Science and Numerical Simulation, Том. 125, 107383. https://doi.org/10.1016/j.cnsns.2023.107383
Bashkirtseva, I., Pisarchik, A. N., & Ryashko, L. (2023). Multistability and stochastic dynamics of Rulkov neurons coupled via a chemical synapse. Communications in Nonlinear Science and Numerical Simulation, 125, [107383]. https://doi.org/10.1016/j.cnsns.2023.107383
Аннотация: We study complex dynamics of two Rulkov neurons unidirectionally connected via a chemical synapse with respect to three control parameters: (i) a parameter responsible for the type of dynamical behavior of a solitary neuron, (ii) coupling strength, and (iii) noise intensity. The coupled system exhibits various scenarios on the route from a stable equilibrium to chaos with respect to the coupling strength. We observe a variety of dynamical regimes, including mono-, bi- and tri-stability, order-chaos transitions and vice versa, as well as the coexistence of in-phase and anti-phase synchronization. We also study transitions between in-phase and out-of-phase synchronization with statistics on the duration of synchronization intervals and transitions from order to chaos. In addition to numerical simulations, we demonstrate the effectiveness of the analytical confidence ellipses method based on stochastic sensitivity approach. © 2023 The Author(s)
Ключевые слова: CHAOS
CHEMICAL SYNAPSE
MAP-BASED NEURON MODELS
NEURONAL DYNAMICS
NOISE-INDUCED EFFECTS
STOCHASTIC SENSITIVITY
SYNCHRONIZATION
DYNAMICS
NEURONS
NUMERICAL METHODS
STOCHASTIC MODELS
STOCHASTIC SYSTEMS
CHEMICAL SYNAPSE
COUPLING STRENGTHS
IN-PHASE
MAP-BASED NEURON MODEL
MULTISTABILITY
NEURON MODELING
NEURONAL DYNAMICS
NOISE-INDUCED EFFECT
STOCHASTIC SENSITIVITY
STOCHASTICS
SYNCHRONIZATION
URI: http://elar.urfu.ru/handle/10995/130611
Условия доступа: info:eu-repo/semantics/openAccess
cc-by-nc-nd
Текст лицензии: https://creativecommons.org/licenses/by-nc-nd/4.0/
Идентификатор SCOPUS: 85163986624
Идентификатор WOS: 001029016100001
Идентификатор PURE: 41586122
ISSN: 1007-5704
DOI: 10.1016/j.cnsns.2023.107383
Сведения о поддержке: Russian Science Foundation, RSF: 21-11-00062
The work was supported by the Russian Science Foundation (project No. 21-11-00062).
Карточка проекта РНФ: 21-11-00062
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85163986624.pdf2,5 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons