Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/130571
Title: A bottleneck routing problem with a system of priority tasks
Authors: Chentsov, A. G.
Issue Date: 2023
Publisher: Udmurt State University
Citation: Ченцов, АГ 2023, 'ЗАДАЧА МАРШРУТИЗАЦИИ «НА УЗКИЕ МЕСТА» С СИСТЕМОЙ ПЕРВООЧЕРЕДНЫХ ЗАДАНИЙ', Известия Института математики и информатики Удмуртского государственного университета, Том. 61, стр. 156-186. https://doi.org/10.35634/2226-3594-2023-61-09
Ченцов, А. Г. (2023). ЗАДАЧА МАРШРУТИЗАЦИИ «НА УЗКИЕ МЕСТА» С СИСТЕМОЙ ПЕРВООЧЕРЕДНЫХ ЗАДАНИЙ. Известия Института математики и информатики Удмуртского государственного университета, 61, 156-186. https://doi.org/10.35634/2226-3594-2023-61-09
Abstract: We consider a minimax routing problem related to visiting megacities under precedence conditions and cost functions with task list dependence. It is supposed that some megacity system requiring visiting above all is selected. For solving, an approach with decomposition into a set of two minimax routing problems is proposed. A two-step widely understood dynamic programming procedure realizing an optimal composition solution is constructed. The above-mentioned optimality is established by theoretical methods. Application of the results obtained is possible under investigation of multi-stage processes connected with regular allocation of resources. Another variant of application concerns the particular case of one-element megacities (i. e., cities) and may be related to the issues of aviation logistics under organization of flights using one tool (airplane or helicopter) under system of tasks on the realization of passing cargo transportation with prioritization of visits realized above all. © 2023 The Author(s).
Keywords: DYNAMIC PROGRAMMING
PRECEDENCE CONDITIONS
ROUTE
URI: http://elar.urfu.ru/handle/10995/130571
Access: info:eu-repo/semantics/openAccess
RSCI ID: 53741294
SCOPUS ID: 85162837059
WOS ID: 001005574800009
PURE ID: 39284093
ISSN: 2226-3594
DOI: 10.35634/2226-3594-2023-61-09
Sponsorship: Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-02-2023-913
Funding. The work was performed as part of research conducted in the Ural Mathematical Center with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement number 075-02-2023-913).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85162837059.pdf359,53 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.